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1 Introduction

Prostate Cancer is one of the most common cancer among men in America. According to the American
Cancer society, about one in eight American men will be diagnosed with prostate cancer during his lifetime.
In fact, prostate cancer is the second leading cause of cancer death among American men. Given the
prevalence of prostate cancer, it is clear that a better understanding of risk factors associated with prostate
cancer risk is a very important step forward in helping people diagnosed with cancer.

In this report, we analyze a dataset collected on 97 men diagnosed with prostate cancer. Prostate is a
gland found in men that is responsible for producing the seminal fluid that nourishes and transports sperms.
Therefore, prostate cancer, as the name suggests, is the cancer that occurs in the prostate. A prostate cancer
patient either have their cancer confined to the prostate or the cancer spreads to the outer wall of the prostate.
The latter scenario is called capsular penetration. Doctors sometimes recommend a surgical procedure called
radical prostatectomy as a treatment option for patients diagnosed with this cancer. However, there is a risk
associated with this procedure. Around 10% of the men who undergo this surgery are effected by a condition
called seminal vesicle invasion (SVI), which is said to occur when cancer spreads to a nearby gland called
seminal vesicle. Finally, prostate gland enlargement is also called Benign Prostatic hyperplasia (BPH). BPH
causes uncomfortable urinary symptoms and is a common condition as men get older.

Amount of a protein called Prostate Specific Antigen(PSA) in blood samples of patients is a good indicator
of prostate cancer. Men with high levels of PSA are more likely to be diagnosed with prostate cancer. Once
a person has been diagnosed with prostate cancer, it is important for doctors to stage and grade the cancer
i.e. understand the cancer’s growth, spread and how it looks like under a microscope. Gleason score is one
such cancer staging and grading system. A Lower Gleason score indicates a low grade cancer, i.e. cancer
that grows more slowly and less likely to spread.

2 Prostate cancer study design

The prostate cancer study considered in this report is based on data collected on 97 men who were about to
undergo radical prostatectomies. The experimenters are interested to understand the association between
Prostate specific antigen (PSA) and a number of clinical measurements taken in men with advanced prostate
cancer. Each of these 97 patients is associated with an ID number between 1 and 97 to protect their identities.
Eight other clinical measurements were taken for each of the 97 patients involved in this study. The response
variable of interest is PSA while the independent variables involved are ID, cancer volume, weight of prostate,
age, amount of BPH, SVI status, degree of capsular penetration and Gleason score. Table 1 summarizes
important information about the dependent and independent variables involved in the study.

As it can be observed in Table 1, there are two factors involved in the study - SVI and Gleason. The factor
SVI is a binary factor indicating the presence or absence of SVI, while Gleason is a factor with three levels - 6,
7, 8. Therefore, this is a two-factor study with six possible treatment combinations. Each of the 97 patients
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Variable name Variable type Description

ID Indexing variable Identification of patients
(1-97)

PSA quantitative/numerical Serum PSA level
(mg/ml)

Cancer volume quantitative/numerical Estimate of prostate
cancer volume (cc)

Prostate weight quantitative/numerical Prostate weight
(gm)

Age quantitative/numerical Age of patient
(years)

BPH quantitative/numerical Amount of BPH
(cm2)

SVI Factor with levels 0, 1 0 (Absence of SVI),
1 (Presence of SVI)

Capsular Penetration quantitative/numerical Degree of capsular
penetration (cm)

Gleason score Factor with levels 6, 7, 8 6 (Low grade cancer),
7 (Medium grade cancer),
8 (high grade cancer)

Table 1: Table summarizing the variables involved in the Prostate cancer data set.

involved in the study are the experimental units of this study. Both the factors involved are observational
factors, as the treatment combination corresponding to each person is not a result of random assignment.
Instead, both the factor levels are intrinsic to the patient’s condition. Since there is no randomization
involved in assigning treatments to experimental units, it is clear that this is an observational study. The
SVI effects must be modelled as fixed effects, as there are exactly two possible SVI statuses (SVI present
or absent). Gleason score, by definition, is an integer score given by pathologists that is one of 6, 7, or 8.
Therefore, factor effects associated with Gleason score are fixed.

SVI \Gleason 6 7 8

0 32 34 10
1 1 9 11

Table 2: Number of sample points under each treatment combination

Based on Table 2, we observe that there exists at least one observation under every treatment combination.
Therefore, the factors are crossed, and we are dealing with a two-factor study with unequal sample sizes
under each treatment combination.

3 Exploratory data analysis

The Figure 1 gives an initial picture of how the data looks like and what properties it has. Based on plot
in Figure 1, we observe that all quantitative variables except that of age have a right skewed kernel density
estimate. Age has a left skewed kernel density estimate. Some pairs of quantitative variables appear to be
sufficiently correlated. Except for a couple of scatter plots, an obvious pattern is not clear. However, most
plots appear to have data points packed densely in one region of the graph. Each plot should be looked at
individually for better understanding.

Our aim is to fit a regression model that assumed IID normal errors. This means that the response of interest
(here it is PSA) must be approximately normally distributed. Therefore, applying a log transformation to the
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Figure 1: Kernel density estimates and correlation coefficients

response PSA will be appropriate, as it would make the distribution less right skewed and more symmetric.
This is what we observe in the plots in Figure 2a and Figure 2b.

(a) KDE of PSA values (b) KDE of log(PSA) values

Figure 2: Kernel density estimate of PSA before and after log transformation

Figure 3 is a paired plot constructed (similar to Plot in Figure 1) for log transformed PSA values and other
untransformed quantitative variables given in Table 1. The data points in plots involving log(PSA) appear
to be more spread out now than before. In order to model the other quantitative variables as covariates, we
need evidence that the quantitative variables vary approximately linearly with the log(PSA) values. Since
this is not clear in Figure 3, individual quantitative variables should be examined to see if they must be
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Figure 3: Kernel density estimates and correlation coefficients for log(PSA) and other quantitative

transformed as well.

The scatter plot of log(PSA) against cancer volume is given in Figure 4a. The plot looks like a random
scatter around the curve y = log(x). Therefore, applying a log transformation on the predictor can result in
an approximate linear relationship between response and predictor. This is exactly what we observe in the
second plot of Figure 4b.

(a) log(PSA) against cancer volume (b) log(PSA) against log(cancervolume)

Figure 4: Scatter-plot of log(PSA) against untransformed and log transformed cancer volume values
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In the scatter plot of log(PSA) against prostate weight in Figure 5a, we observe that the values of log(PSA)
increase rapidly with respect to prostate weight in a way that is similar to the behavior of y = x. There is
one point in Figure 5a that doesn’t quite fit with the trends of the rest of the data points. For the prostate
weight variable, the log transform is again recommended for two reasons. First, x tends to infinity faster
than log(x). Therefore, the prostate weight data points are more likely to spread out after applying a log
transform. This might help avoid scatter around a line that is almost vertical. Second, since the log(x)
function increases at a slower rate than x, transformation will drag the extreme point closer to the remaining
points. This is what we observe in Figure 5b. In fact, the plot in Figure 5b exhibits approximate linear
trend.

(a) log(PSA) against Prostate weight (b) log(PSA) against log(Prostate weight)

Figure 5: Scatter-plot of log(PSA) against untransformed and log transformed Prostate weight values

When we plot log(PSA) against capsular penetration, the plot looks approximately linear, as shown in
Figure 6a. There are several observations that take 0 capsular penetration values. Therefore, applying a log
transform to this variable is not appropriate. A plot of log(PSA) against non-zero log transformed capsular
penetration values is in Figure 6b. It is clear that the plot in Figure 6b shows greater linear trend than
plot in Figure 6a. One option would be to add a small error term to each of the 0 capsular penetration
observations so that the log transform can be applied. But adding noise this way would mean that all
the zero capsular penetration values are transformed to large negative values, while the non-zero capsular
penetration values transform to value closer to zero. This means that log transformed data is far more spread
out than the actual data. This change in the nature of the data might hide some useful information from
the untransformed data. Therefore, capsular penetration should be left untransformed.

The plots of, log(PSA) against age and BPH, is given in Figure 7. Except for the two points highlighted in
orange, all the other points in log(PSA) against age plot of Figure 7a seem to follow an approximate linear
trend. Therefore, no transformation is required for the variable age. All points, with non-zero BPH values,
do not appear to follow any particular trend. BPH appears to be a random scatter around a line parallel to
the x-axis (a scatter with non-constant variance). The number of available observations reduces as the value
of BPH increases. Since no non-linear trend is observed, there is no need for a transformation on BPH.

Table 3 summarizes the response and predictor transformations that were concluded to be appropriate based
on graphical analysis done so far.

Therefore, the final set of quantitative variables that we are going to work with are log(PSA) (response),
log(Cancervolume), log(Prostateweight), Age, BPH, and Capsular penetration. Based on the plots con-
structed so far, it is clear that we observe approximate linear relationship between the response and other
quantitative variables. If it can be seen through graphical evidence that different treatment combination
regression lines have equal slopes, then the variables log(Cancervolume), log(Prostateweight), Age, BPH,
and Capsular penetration can be modelled as covariates.

Based on the plots in Figure 8, it is reasonable to say that regression lines corresponding to different
treatments can be approximated as parallel lines for all the quantitative variables. Therefore, the quantitative
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(a) log(PSA) against all capsular penetration
values

(b) log(PSA) against log transformed non-zero
capsular penetration values.

Figure 6

(a) log(PSA) against age (b) log(PSA) against BPH

Figure 7: the general caption

Variable Transformation required (if any)

PSA log(PSA)
Cancer volume log(Cancervolume)
Prostate weight log(Prostateweight)
Age No transformation applied
BPH No transformation applied
Capsular penetration No transformation applied

Table 3: Summary of transformations required (if any) on quantitative variables.

variables can be modeled as covariates. Although this seems like a fair assumption to make, one can observe
from Figure 8 that the number of observations in some treatment combinations is too low to predict a trend
in data.

Our regression model includes two factor variables - SVI and Gleason score. Graphical evidence for whether
the factors interact can be obtained through an interaction plot. Based on the interaction plot in Figure 9,
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(a) log(PSA) against log(cancervolume) (b) log(PSA) against log(prostateweight)

(c) log(PSA) against age (d) log(PSA) against BPH

(e) log(PSA) against capsular penetration

Figure 8: Plots of log(PSA) against different quantitative variables grouped by treatment combination.

there appears to be little to no interaction between the factors SVI and Gleason score.

Although we tried to obtain graphical evidence on how the regression model needs to be like, we need to do
hypothesis testing to be more confident about our claims of no interaction and equal slope for all treatment
combinations. This has been dealt with in the next section.
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Figure 9: Interaction plot

4 Modelling, its adequacy and inference

Based on the exploratory data analysis alone, the following ANCOVA model will be a good fit for the data.

Yijk = µ··· + αi + βj + γ1X
(1)
ijk + · · ·+ γ5X

(5)
ijk + ϵijk for (i, j, k) ∈ {1, 2} × {1, 2, 3} × {1, · · ·nij} (1)

An ANCOVA model implies the assumption that ϵijk ∼ N (0, σ2) for all i, j, k. αi denotes i-th level SVI fixed
factor effects subject to the restriction α1 + α2 = 0. βj denotes j-th level SVI fixed factor effects subject to

the restriction β1 + β2 + β3 = 0. The variables X
(1)
ij , · · · , X(5)

ij represent the five covariates corresponding to
log(cancervolume), log(prostateweight), age, BPH and capsular penetration respectively. All covariates are
centered.

As mentioned earlier, the model (1) can be claimed to be the final model with more confidence if we can
prove two statements, in the order mentioned, through hypothesis testing. First, the assumption that slopes
of different treatment regression lines for a given covariate are equal. Another assumption incorporated in
(1) is that SVI and Gleason factors do not interact. These two statements are first statistically tested in this
section.

When treatments interact with the covariate variable, it results in non-parallel slopes for different treatment
combinations. Hence, covariance analysis will be inappropriate. In order to test this assumption, we use the
general linear approach where the “full model” is as follows:

Yijk = µ··· + α1I(1)
ij + β1I(2.1)

ij + β2I(2.2)
ij + (αβ)11I(1)

ij I(2.1)
ij + (αβ)12I(1)

ij I(2.2)
ij +

{
5∑

z=1

γzX
(z)
ijk

}
+ (2){

5∑
z=1

δ(α)z X
(z)
ijkI

(1)
ij

}
+

{
5∑

z=1

δ(β1)z X
(z)
ijkI

(2.1)
ij

}
+

{
5∑

z=1

δ(β2)z X
(z)
ijkI

(2.2)
ij

}
(3)

Note that the full model in (2) has, in the order mentioned, SVI treatment effects, Gleason treatment effects,
interactions between SVI and Gleason treatments, covariates, interaction between covariates and SVI, and
interaction between covariates and Gleason.
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Test for equality of slopes is equivalent to the following hypothesis testing:

H0 : δ(α)z = δ(β1)z = δ(β2)z = 0∀z ∈ {1, · · · , 5} (vs) (4)

H1 : at least one of δ(α)z , δ(β1)z , δ(β2)z for z ∈ {1, · · · , 5} is non-zero (5)

The reduced model to test the hypothesis (4) using general linear approach is given by:

Yijk = µ··· + α1I(1)
ij + β1I(2.1)

ij + β2I(2.2)
ij + (αβ)11I(1)

ij I(2.1)
ij + (αβ)12I(1)

ij I(2.2)
ij +

{
5∑

z=1

γzX
(z)
ijk

}
(6)

F statistic based on general linear approach is calculated using error sum of squares for the reduced and full
models.

F ∗ =
SSE(R)− SSE(F )

dfR − dfF
× dfF

SSE(F )
=

42.285− 37.119

86− 71
× 71

37.119
= 0.6589 where F ∗ H0∼ F (15, 71)

Based on the F ∗ value, the p-value associated with testing the hypothesis (4) is 0.815. Therefore, at 5%
significance, we fail to reject the null hypothesis. Using covariance analysis is therefore valid as expected
based on initial graphical analysis. We can continue to now work with model (6).

The general linear approach is again used to test for the significance of interaction effects in the model (6).
Test for interaction effects is equivalent to the following hypothesis test.

H0 : (αβ)11 = (αβ)12 = 0 (vs) H1 : at least one of (αβ)11, (αβ)12 is non-zero. (7)

The full model in this case is (6) while the reduced model is (1).

F ∗ =
SSE(R)− SSE(F )

dfR − dfF
× dfF

SSE(F )
=

42.649− 42.285

88− 86
× 86

42.285
= 0.3701 where F ∗ H0∼ F (2, 86)

Based on the F ∗ value, the p-value associated with testing the hypothesis (4) is 0.692. Therefore, at 5%
significance, we fail to reject the null hypothesis i.e. interactions between SVI and Gleason are statistically
insignificant.

Therefore, a no interaction, equal slope ANCOVA model can be employed for the given data set. The
appropriateness of this model can be observed based on plots in Figure 10. There is no evidence of se-
vere deviations from the assumptions of homoscedasticity and normality based on plots in Figure 10a and
Figure 10b respectively. The plot in Figure 10c indicates the absence of any influential points in the model.

Finally, since some predictors appeared significantly correlated in the initial exploratory analysis, we check
for presence of multi-collinearity using Generalized variance Inflation Factors (GVIFs). GVIF values more
than five indicate presence of moderate to severe multi-collinearity. Since all GVIF values in Table 4 between
1 and 2.5, there is not enough evidence of multi-collinearity.

Variable GVIF

centered log(Cancervolume) 1.930
centered log(Prostateweight) 1.541
centered Age 1.263
centered BPH 1.632
centered Capsular penetration 2.312
SVI 2.022
Gleason 1.624

Table 4: Generalized variance inflation factors of variables involved in model (1).

Least square estimates of the fitted model are provided in Table 5. The p-values associated with test for
significance of individual coefficients is provided as well.
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(a) Residuals vs fitted values plot

(b) Normal Q-Q plot

(c) Standardized residuals vs leverage

Figure 10: Model adequacy checking for the no interaction, equal slope model.

Variable Least square estimate p-value

Intercept 2.742 ≈ 10−16

centered log(Cancervolume) 0.513 ≈ 10−8

centered log(Prostateweight) 0.390 0.0307
centered Age -0.017 0.1225
centered BPH 0.047 0.1173
centered Capsular penetration 0.025 0.3785
SVI = 0 -0.362 0.0039
Gleason = 6 -0.269 0.0267
Gleason = 7 0.109 0.2820

Table 5: Least square estimates of the coefficients in model (1).

Based on p-values in Table 5, the covariates log(Cancervolume), log(Prostateweight) are statistically signifi-
cant while the covariates age, BPH, and capsular penetration are statistically insignificant. The coefficients
associated with log(Cancer volume) and log(Prostate weight) are positive, as expected based on plots in
Figure 5b and Figure 4b. However, the effect of age is not well captured by the model we have. According
to the plot Figure 7a, older men are more likely to have high PSA and therefore are more prone to cancer.
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According to the model we have, age is statistically insignificant.

In order to test for the significance of SVI and Gleason treatment effects in model (6), we use the general
linear approach again. To test for SVI factor effects, the hypothesis test of interest is:

H0 : α1 = α2 = 0 (vs) H1 : α1 ̸= 0 or α2 ̸= 0 (8)

The full model to test this hypothesis is model (6) while the reduced model is obtained by setting α1, α2 to
0 in model (6).

F ∗ =
SSE(R)− SSE(F )

dfR − dfF
× dfF

SSE(F )
=

46.908− 42.649

89− 88
× 88

42.649
= 8.788 where F ∗ H0∼ F (1, 88)

Based on the F ∗ value, the p-value associated with testing the hypothesis (8) is 0.0039. Therefore, at 5%
significance we reject the null hypothesis, i.e. the SVI factor effects are significant. In fact, this is what we
observed in the interaction plot in Figure 9 where the estimated mean log(PSA) value of patients with no
seminal vesicle invasion is lower than that of patients with seminal vesicle invasion consistently across all
cancer grades.

To test for Gleason factor effects, the hypothesis test of interest is:

H0 : β1 = β2 = β3 = 0 (vs) H1 : β1 ̸= 0 or β2 ̸= 0 or β3 ̸= 0 (9)

The full model to test this hypothesis is the model (6) while the reduced model is obtained by setting
β1 = β2 = 0 in the same model.

F ∗ =
SSE(R)− SSE(F )

dfR − dfF
× dfF

SSE(F )
=

46.334− 42.649

90− 88
× 88

42.649
= 3.802 where F ∗ H0∼ F (2, 88)

Based on the F ∗ value, the p-value associated with testing the hypothesis (9) is 0.0261. Therefore, at 5%
significance, we fail to reject the null hypothesis i.e. the factor effects associated with Gleason are significant.
This was observed in the interaction plot in Figure 9 as well. PSA levels of patients with higher grade cancer
(i.e. higher Gleason score) is elevated. The higher the Gleason score, the higher is the blood PSA level.

Table 6 provides the interval estimates of pairwise comparison of interest. These intervals are obtained
using the Bonferroni procedure. Therefore, the confidence coefficient is at least 0.95. Tukey procedure is not
appropriate in the ANCOVA setting. As shown in Table 6, the number of comparisons of interest are four,
which is close to the total number of treatment combinations. In such scenarios, the Bonferroni procedure
is better than the Scheffe procedure. In fact, this can be checked by calculating the Scheffe and Bonferroni
multipliers, which can be calculated to be 3.4027 and 1.007 respectively. Clearly, Bonferroni procedure will
give us tighter confidence intervals.

Comparison Confidence interval Conclusion

α1 − α2 (−1.0137,−0.4333) α1 < α2

β1 − β2 (−0.3635, 0.0442) β1 = β2

β1 − β3 (−0.9303,−0.3625) β1 < β3

β2 − β3 (−0.7384,−0.2351) β2 < β3

Table 6: A confidence coefficient of at least 0.95 using Bonferroni procedure.

Based on the Table 5, (−1.0137,−0.4333) is the interval estimate for α1 − α2. This means that the factor
effects associated with SV I = 1 is more than that of SV I = 0. In other words, the effect of having seminal
vesicle invasion on log(PSA) levels is more than that of not having seminal vesicle invasion. Based on
Table 5, α1 = −0.362. Hence α2 = 0.362. Therefore, our final model (6) contributes 0.362 to the response
every time the patient has seminal vesicle condition. The response is reduced by 0.362 every time the patient
does not have SVI. This models what we observed in Figure 8e appropriately. In Figure 8e, we observe that
patients without SVI tend to have a response value of 2 or above, while those without SVI appear to have
their response values between −1 and 4. A good number of patients have response value less than 2.
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Based on Table 5 :

β̂1 = −0.269 ; β̂2 = 0.109 ; β̂3 = 0.269− 0.109 = 0.16

The confidence interval for β1 − β2 in Table 6 suggests that β1 = β2 which is in line with what we observe
in the interaction plot in Figure 9. However, the estimated coefficients, β̂1 and β̂2, are not quite close.

The confidence interval for β1 − β3 and β2 − β3 in Table Table 6 suggests that β1 < β3 and, β2 < β3

respectively. This again aligns with what we observed in the interaction plot Figure 9. Our estimated
regression coefficients also follow β̂1 < β̂3 and β̂2 < β̂3 as desired. The effect of having a Gleason score of
8 on response is 0.051 more than that of having a Gleason score 7. Although this might appear as a small
effect at first, we must note that the response is log transformed PSA values. Therefore, very small changes
in log(PSA) can imply significant changes in PSA values, since most log(PSA) values in the data set are
small.

5 Conclusion

Based on the data analysis so far, it is clear that people with SVI tend to have higher levels of PSA than
the people without SVI. This implies that people with SVI are more likely to be diagnosed with prostate
cancer than those without SVI. Patients diagnosed with low and medium grade cancer have similar PSA
levels in blood. Therefore, one cannot rely on PSA levels as an indicator to distinguish low grade cancer
from medium grade cancer. Patients with high grade cancer have higher PSA levels than those of low or
medium grade cancer patients, implying that there is a correlation between grade of cancer and blood PSA
levels.

Higher prostate weights contributes to higher PSA levels, which in turn imply an increased likelihood of
getting diagnosed with prostate cancer. The model proposed does not capture the effect of age on PSA
levels. Age, according to Table 5 is statistically insignificant. However, looking at the age of patients in the
data set, we observe that most men are age 50 or above implying that older men are more likely to have
higher PSA levels (i.e. more likely to be diagnosed with cancer). The current model can be modified by
removing the age as a covariate and instead using it as a blocking variable.

Based on graph in Figure 6a, there appears to be a positive correlation between capsular penetration and,
log(PSA) which is not capture by the model proposed. This is probably because the number of data points
with higher capsular penetration values is low. I believe that a square root transformation, instead of the
log transform, can be tried. Finally, there seems to be no effect of BPH on patient PSA levels.

A major assumption throughout the report has been that the covariates and treatments do not interact.
This condition does not appear to be satisfied in the case of capsular penetration and SVI-Gleason treatment
combination. This can be seen in the plot in Figure 8e.

Finally, since this is an observational study, no cause-effect relationships can be inferred from the analysis
so far. Further progress can be made by considering designs that let us infer cause effect relationships in
observational studies.
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