
Classification and analysis of skin lesion images

1. Introduction

The 2019 ISIC Skin Lesion Images Classification dataset was chosen for this study. It is essentially an image
classification problem, with the data consisting of 25331 labeled images from 8 different diagnostic categories,
namely Melanoma, Melanocytic nevus, Basal cell carcinoma, Actinic keratosis, Benign keratosis, Dermatofibroma,
Vascular lesion, and Squamous cell carcinoma. The total data size is approximately 9.2 GB. The images depict skin
lesions, which are any areas of skin that differ from the surrounding skin in color, shape, size, and texture.

Figure 1: Sample Image of labeled skin lesion data

The ground truth histogram shown below demonstrates the data imbalance in which a few categories dominate over
others. It is always advisable to test several algorithms on such data to see which one performs best. In terms of
image classification, convolutional neural nets are said to perform better than other machine learning techniques
because when we convert an image to a feature vector, we lose a lot of spatial information in the form of interaction
between pixel intensities. CNNs, on the other hand, take this information into account when recognizing edges and
thus outperform other methods.

Figure 2: Ground truth histogram of classification categories

Nonetheless, before implementing CNN, we tried and tested other machine learning techniques, and the
performance and results of these methods are discussed in the following sections.

2. Image Transformation

We had to transform our image data into a vector form with features before using any machine learning techniques
so that the features could be fed into various algorithms for training and testing. The process we used to extract
features from an image is shown in the figure below.

Figure 3: Image transformation procedure

The first step was to install and load the EBImage library in R, which contains all of the basic functions for image
processing and analysis. Once the library was loaded, we fixed the pixel size. In this study, we used two
independent approaches. In the first approach, we fixed the pixel size to be 64 x 64 x 3, resulting in a feature vector
of size 12288 x 25331, whereas, in the second approach, the image size was fixed to be 34 x 48 x 3. The pixel size
represents its length, and width and 3 represents the R, G, and B values. The image is then read from the dataset,
resized to our specified dimensions, and saved in vector form. This process is looped to read images one at a time,
resize them to the desired dimensions, and save the resized data in the final feature vector. Once all of the images
have been read, the feature vector is saved locally in the system and used for all subsequent analyses.

3. Exploratory data analysis and dimension reduction
The data analysis presented in the current section and the next one deal with images of size 36x48. The original raw
data downloaded from Kaggle consisted of 25,331 colored images of varying sizes. However, we observed that an
aspect ratio of 4:3 was maintained in all images. Hence, all images were resized to a size that respects the aspect
ratio. Of the 25,331 images, 75% of the data i.e. 18998 images were randomly selected to be used as the training set
while the rest of the 6333 images were used as test set images. Each image is represented as a 36x48x3 vector of
pixel intensities. From Table1, it is clear that there is a heavy imbalance in the data and that it is bound to affect
classification accuracy.

Table 1: Number of images from each class label in the training set.

Class DF VASC SCC AK BKL BCC MEL NV

Proportion 0.0095 0.0097 0.0246 0.0350 0.1023 0.1310 0.1798 0.5080

A histogram of average red (R), blue (B), and green (G) pixel intensities corresponding to images of each class are
shown in Figure 4. We observe that the intensity histograms corresponding to blue and green are all left-skewed
with maximum intensities being close to 0.6. On the other hand, the red intensity histogram appears to be bimodal
with the maximum intensity being close to 1. If we view image data to be sampled from the corresponding
histograms in Figure 4, then the distributions from which different class images are being sampled look very
similar.

Since each image corresponds to a feature vector of size 36x48x3 = 5184, the next logical step is to perform
dimension reduction. Here, we apply Principal Component Analysis, a linear dimension reduction approach. Scree
plots in Figure 5, show that 15 principal components explain 90% of the variation in the data while 90 principal

2

components are required to capture 96% of the variation in the data. Keeping the computational costs in mind, we
believe that retaining 15 principal components is enough. Furthermore, retaining 15 principal components is backed
by Kaiser’s rule as well i.e. there are exactly 15 eigenvalues greater than or equal to 1.

Figure 4: Histogram of RBG pixel intensities categorized by type of skin lesion.

Using these 15 principal components, we obtain a reduced feature vector of length five corresponding to each
image. Different classification techniques are applied to the reduced feature set as it is to identify potential problems
with the data at hand so that modifications can accordingly be made. Table 2 summarizes the results of the
classification methods applied to the reduced feature set, their accuracy, and a brief comment on classification
performance. Note that the data was not scaled prior to dimension reduction since all features are pixel intensities
measured on the same scale.

Figure 5: Scree plots to identify the required number of PCs.

Based on our observations mentioned in Table 2, the following are the problems that must be addressed to obtain
models with improved classification performance:

1. Data imbalance: This issue is dealt with by using a technique called Synthetic Minority Over-Sampling
Technique (SMOTE). SMOTE is an over-sampling approach that over-samples the minority class by
creating synthetic examples.

3

2. Use of information gain: Instead of bagging and boosting traditional decision trees that split based on
information gain, we can focus on bagging and boosting C5.0 trees that use Gain Ratio as splitting criteria.

Table 2: Classifiers applied to the unaltered reduced feature set. The accuracy given is on the test data set.

Classifier Accuracy Comments on classifier performance

Single decision tree
with information gain as
the splitting criteria

51.5% Due to data imbalance and the use of information gain as the splitting
criteria, we observe that the trained decision tree classifies any new point
into one of the three most prevalent classes - NV, MEL, and BCC

C5.0 which uses Gain
ratio as the splitting
criteria.

43.6% Although lower in accuracy than the first classifier, we observe that C5.0
fits a better model than the first one in the sense that the trained tree
classifies new data points into 5 different classes. This improvement is
due to the use of gain ratio. However, data imbalance is still an issue.

Bagged trees with
information gain as
splitting criteria (500
trees)

36% Poor performance of the bagged classifier is because the weak learners
are not independent due to strong predictors like PC1. More prevalent
classes like NV are classified the best while less prevalent classes are
almost always misclassified. Like in the previous cases, we have the
issues of data imbalance, and the use of information gain in splitting.

Random Forest
involving 500 trees and
3 predictors per tree

39.5% The performance of RF classifier is slightly better than the bagged
classifier because RF decorrelates the tree topologies. However, the
performance is still not high enough and very similar to the bagged trees
due to the issues of data imbalance and the use of information gain.

Boosting with
multiclass cross-entropy
loss and 500 trees

29.7% Although it is expected that boosting would perform better than random
forests, the opposite has been observed implying the possibility of
potential outliers in the data that have to be dealt with first. Like in earlier
cases, data imbalance and use of information gain are still issues.

SVM with linear kernel
and cost 10

51% Linear kernel was chosen not only for its low computation cost but also
because it performed better than SVMs with the radial kernel. All test set
points are classified as either NV or MEL, the two most prevalent classes.
The only issue here is the data imbalance.

4. Dealing with data imbalance

Upon applying SMOTE to the current training data, we observe that DF (the least prevalent class) is oversampled
while NV (the most prevalent class) is downsampled. The total number of samples we have after applying SMOTE
technique is 37,460. The proportion of images of each class after applying SMOTE technique is given in Table 3.

Table 3: Proportion of images in different classes after applying SMOTE over-sampling technique

Class AK BCC BKL DF MEL NV SCC VASC

Prop. (original) 0.0350 0.1310 0.1023 0.0095 0.1792 0.5080 0.0246 0.0097

Prop. (SMOTE) 0.0178 0.0664 0.0519 0.4977 0.0912 0.2576 0.0125 0.0049

Although the issues of data imbalance and use of information gain have been addressed, we haven’t yet dealt with
outliers. Therefore, boosted C5.0 trees are likely to perform poorly in comparison to bagged C5.0 trees if we
continue to use multi-class cross-entropy. An attempt was made to look for R packages that implement boosting

4

using the multi-class Huber loss, however, we weren’t able to find one. Even if we bag C5.0 trees using synthetic
data, the problem of having strong predictors like PC1 is not lost.

Therefore, the best way ahead is to consider an RF classifier made using C5.0 trees. Or one can use an SVM as well
since the only issue identified in Table 2 regarding SVM was data imbalance which is solved by SMOTE technique.
A summary of the performance of classifiers applied to SMOTE synthetic data is given in Table 4.

Table 4: Classifiers applied to data generated by using the SMOTE over-sampling technique. Here we replaced
decision trees with C5.0.

Classifier Accuracy Comments on classifier performance

Boosted C5.0 with 5
boosting iterations

39% Boosting performance with as many as 500 trees was 29% when we used a
regular decision tree. However, boosted C5.0, with just 5 boosting
iterations produced an accuracy of 39%.

Bagged C5.0 with 10
trees

43% Bagging performance improved from 36% to 43%. Also, note that we used
500 trees earlier (Table 2) while we attained higher accuracy with just 10
trees. Bagging with 100 C5.0 trees further increases the accuracy to 46.8%.

5. Drawbacks of current data analysis

In the data analysis that we did so far, we did not attempt to deal with outliers in the data which are clearly present
based on the boosting results we obtained, and also the PC score plot obtained. (PC score plot is not included in the
report due to lack of space.) Even if all the issues identified are somehow rectified, there are some inherent
drawbacks of this approach that cannot be rectified.

1. Representing images as a vector leads to a loss of spatial information that is present in the 3D array
representation of an image.

2. PCA is restricted to looking at only linear combinations of our features. Therefore, it wouldn’t be as
powerful as a non-linear dimension reduction approach. (Eg. Extracting features using a neural network)

6. Results for 64x64x3 Feature Vector

As mentioned earlier in the report we followed two independent approaches to test different machine learning
algorithms. This section briefly discuss the results obtained by using a feature vector of size 64x64x3.

SVM:

5

● Training Accuracy: 92.7%
● Runtime: 1.33 mins
● Testing Accuracy: 55.6%

Random Forest:

● Training Accuracy: 100%
● Runtime: 7.9 mins
● Testing Accuracy: 57.2%

7. Convolutional Neural Network (CNN)

● Training Accuracy: 85%
● Runtime: 93.6 mins
● Testing Accuracy: 79.6%

6

8. References

[1] Tschandl P., Rosendahl C. & Kittler H. The HAM10000 dataset, a large collection of multi-source
dermatoscopic images of common pigmented skin lesions. Sci. Data 5, 180161 doi.10.1038/sdata.2018.161 (2018)

[2] Noel C. F. Codella, David Gutman, M. Emre Celebi, Brian Helba, Michael A. Marchetti, Stephen W. Dusza,
Aadi Kalloo, Konstantinos Liopyris, Nabin Mishra, Harald Kittler, Allan Halpern: “Skin Lesion Analysis Toward
Melanoma Detection: A Challenge at the 2017 International Symposium on Biomedical Imaging (ISBI), Hosted by
the International Skin Imaging Collaboration (ISIC)”, 2017; arXiv:1710.05006.

[3] Marc Combalia, Noel C. F. Codella, Veronica Rotemberg, Brian Helba, Veronica Vilaplana, Ofer Reiter, Allan
C. Halpern, Susana Puig, Josep Malvehy: “BCN20000: Dermoscopic Lesions in the Wild”, 2019;
arXiv:1908.02288.

Contributions (First names mentioned alphabetically)

1. Aditya: Resized the images to 64*64*3 and extracted the features of images. Implemented support vector
machine (SVM), boosting, random forest (RF), and logistic regression. Implemented Convolutional Neural
Network (CNN) for image classification.

2. Padma: Attempted extracting features corresponding to images. The R implementation, and report writing
correspond to sections 3, 4, and 5. (Implementation of standard classifiers, SMOTE oversampling)

3. Sudhir: Data Exploration, Image transformation process in R, feature extraction and implementing R inbuilt
machine learning algorithm support vector machine, logistic regression.

7

Project-2 R Code

November 16, 2022

The results below are generated from an R script.

```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```

```{r}
# Load the required libraries
library(EBImage)
library(readxl)
library(tidyverse)
library(caret)
library(nnet)
library (randomForest)
library(e1071)
library(gbm)
```

```{r}

# set working directory: Set this as the directory where you have your .rmd file
and the "Data" folder
Wd_path="D:/Aditya/R"
setwd(Wd_path)

# Read the excel file as data frame. Make sure to save the file as .xlsx
instead of the default .csv extension
df = read_excel("Data/ISIC_2019_Training_GroundTruth.xlsx",col_names=TRUE)
df = df[sample(nrow(df), 1000),]

```

```{r}

Types=colnames(df)[2:9] # The types of skin Lesion (8 types),
Unknows is not considered as none of the labels corresponds to unknown
w=64 # Width of the image
h=64 # Height of the image
N_features=w*h*3
features <- data.frame(matrix(0, nrow=dim(df)[1], ncol=(N_features+1)))
row.names(features) <- df$image
colnames(features)[N_features+1] <- "type"

1



f = matrix(0, nrow = 1, ncol=N_features) # Empty column vector to store
the unrolled pixel intensity data

# Read the images based on type of Lesion,
resize and assign to the corresponding column in the data frame
for (i in 1:length(Types)) {

t=Types[i] # Type of the Leasion
lst=df$image[df[t]==1] # Indexes of all images belonging to that leasion type

# Read all images of a particular type
for (j in 1:length(lst)){

Name_I=lst[j] # Name of the image
pth=paste("Data/",t,"/",Name_I,".jpg",sep="")
#Path where image belong based on the name and type
I = readImage(pth) # Reading the image
I_resized = resize(I,w,h) # Resize into w*h
f=t(as.vector(I_resized)) # Unroll the image.
This unrolls column wise, picks 2nd column of red,
places it below 1st, repets for R,G, and B
features[Name_I,1:N_features]=f[1,1:N_features]
features[Name_I,"type"]=t

}

}
features$type <- as.factor(features$type)
save(features,file =paste(Wd_path,"/features.Rdata",sep=""))
```

```{r}
load(file =paste(Wd_path,"/features.Rdata",sep=""))
```

```{r}

set.seed(1)
#training.samples <- df_subset$image %>% createDataPartition(p = 0.75, list = FALSE)
# Now Selecting 75% of data as sample from total 'n' rows of the data
sample <- sample.int(n = nrow(features), size = floor(.75*nrow(features)), replace = F)
train <- features[sample, ]
test <- features[-sample, ]
```

```{r}
# Logistic Regression
start_time <- Sys.time()
logistic <- nnet::multinom(type ~., data = train)
# Summarize the model
summary(logistic)
# Make predictions
predicted.classes <- logistic %>% predict(test)
end_time <- Sys.time()
logistic_time=end_time - start_time
head(predicted.classes)

2



# Model accuracy
mean(predicted.classes == test$type)
```

```{r}
# RandomForest
start_time <- Sys.time()
RF=randomForest(as.factor(train$type)~., data = train)
# Summarize the model
summary(RF)
# Make predictions
predicted.RF.train <- RF %>% predict(train)
predicted.RF.test <- RF %>% predict(test)
end_time <- Sys.time()
RF_time=end_time - start_time
end_time - start_time
head(predicted.RF.test)
# Model accuracy
mean(predicted.RF.train == train$type)
mean(predicted.RF.test == test$type)
```

```{r}
confusionMatrix(as.factor(test$type),

predicted.RF.test
)

```

```{r}
#Support Vector Machine
start_time <- Sys.time()
svm = svm(type~. , data = train, kernel = "radial", cost = 300, scale = FALSE)
# Summarize the model
summary(svm)
# Make predictions
predicted.svm.train <- svm %>% predict(train)
predicted.svm.test <- svm %>% predict(test)
end_time <- Sys.time()
svm_time=end_time - start_time
end_time - start_time
head(predicted.svm.test)
# Model accuracy
mean(predicted.svm.train == train$type)
mean(predicted.svm.test == test$type)
```
```{r}
confusionMatrix(as.factor(test$type),

predicted.svm.test
)

```

3


```{r}
#Boosting
gbm_train = train
gbm_test = test
gbm_train$type=as.numeric(gbm_train$type)
gbm_test$type=as.numeric(gbm_test$type)
start_time <- Sys.time()
GBM = gbm(type~. , data = gbm_train ,distribution = "gaussian", n.trees = 500,

shrinkage = 0.01, interaction.depth = 4)
# Summarize the model
summary(GBM)
# Make predictions
predicted.gbm.train <- GBM %>% predict(gbm_train)
predicted.gbm.test <- GBM %>% predict(gbm_test)
end_time <- Sys.time()
boosting_time=end_time - start_time
end_time - start_time
head(predicted.gbm.train)
# Model accuracy
mean(round(predicted.gbm.train,digits = 0) == gbm_train$type)
mean(round(predicted.gbm.test,digits = 0) == gbm_test$type)

```

```{r}
decode <- function(x){

case_when(x == 1 ~ "AK",
x == 2 ~ "BCC",
x == 3 ~ "BKL",
x == 4 ~ "DF",
x == 5 ~ "MEL",
x == 6 ~ "NV",
x == 7 ~ "SCC",
x == 8 ~ "VASC",
)

}

confusionMatrix(as.factor(sapply(gbm_test$type, decode)),
as.factor(sapply(round(predicted.gbm.test,digits = 0), decode)) )

```

```{r}

```

The R session information (including the OS info, R version and all packages used):

sessionInfo()

R version 4.2.2 (2022-10-31 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19044)
##
Matrix products: default

4

##
locale:
[1] LC_COLLATE=English_United States.utf8 LC_CTYPE=English_United States.utf8
[3] LC_MONETARY=English_United States.utf8 LC_NUMERIC=C
[5] LC_TIME=English_United States.utf8
##
attached base packages:
[1] stats graphics grDevices utils datasets methods base
##
loaded via a namespace (and not attached):
[1] Rcpp_1.0.9 lattice_0.20-45 png_0.1-7 digest_0.6.30 grid_4.2.2
[6] jsonlite_1.8.3 magrittr_2.0.3 evaluate_0.18 highr_0.9 stringi_1.7.8
[11] rlang_1.0.6 cli_3.4.1 rstudioapi_0.14 Matrix_1.5-1 reticulate_1.26
[16] rmarkdown_2.18 tools_4.2.2 stringr_1.4.1 tinytex_0.42 yaml_2.3.6
[21] xfun_0.34 fastmap_1.1.0 compiler_4.2.2 htmltools_0.5.3 nnet_7.3-18
[26] knitr_1.40

Sys.time()

[1] "2022-11-17 04:02:17 IST"

5

Convolutional Neural Network

November 16, 2022

The results below are generated from an R script.

```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```

```{r}
# set working directory: Set this as the directory where you have your .rmd
file and the "Data" folder
Wd_path="D:/Aditya/R"
setwd(Wd_path)
```

```{r}
# Load the required libraries
library(EBImage)
library(readxl)
library(tidyverse)
library(caret)
options(scipen = 999)
library(magrittr) # needs to be run every time you start R and want to use %>%
library(dplyr) # alternatively, this also loads %>%
library(imager)
library(keras)
```

```{r}
# Use python in your anaconda3 environment folder
reticulate::use_python("C:/Users/admin/anaconda3/envs/tf_image", required = T)
```

```{r}

folder_list <- list.files("Data_1/train/")
folder_path <- paste0("Data_1/train/", folder_list, "/")
folder_path
# Get file name
file_name <- map(folder_path, function(x) paste0(x, list.files(x))) %>% unlist()

# first 6 file name
head(file_name)

1



# last 6 file name
tail(file_name)
length(file_name)

```
```{r}
sample_image <- sample(file_name, 6)
# Load image into R
img <- map(sample_image, load.image)

# Plot image
par(mfrow = c(2, 3)) # Create 2 x 3 image grid
map(img, plot)
```

```{r}
# Full Image Description
img <- load.image(file_name[1])
img
# Image Dimension
dim(img)

# Function for acquiring width and height of an image
get_dim <- function(x){

img <- load.image(x)

df_img <- data.frame(height = height(img),
width = width(img),
filename = x
)

return(df_img)
}

get_dim(file_name[1])
```
```{r}

set.seed(1)
sample_file <- sample(file_name, 800)

# Run the get_dim() function for each image
file_dim <- map_df(sample_file, get_dim)

head(file_dim, 10)
summary(file_dim)
```
```{r}
# Desired height and width of images
target_size <- c(64, 64)

# Batch size for training the model
batch_size <- 32

2



#library(keras)
#install_tensorflow()
# Image Generator
train_data_gen <- image_data_generator(validation_split = 0.25)
# Training Dataset
train_image_array_gen <- flow_images_from_directory

(directory = "Data_1/train/", # Folder of the data
target_size = target_size, # target of the image dimension (64 x 64
color_mode = "rgb", # use RGB color
batch_size = batch_size ,
seed = 1, # set random seed
subset = "training", # declare that this is for training data
generator = train_data_gen
)

# Validation Dataset
val_image_array_gen <- flow_images_from_directory

(directory = "Data_1/train/",
target_size = target_size,
color_mode = "rgb",
batch_size = batch_size ,
seed = 1,
subset = "validation", # declare that this is the validation data
generator = train_data_gen
)

```

```{r}
# Number of training samples
train_samples <- train_image_array_gen$n

# Number of validation samples
valid_samples <- val_image_array_gen$n

# Number of target classes/categories
output_n <- n_distinct(train_image_array_gen$classes)

# Get the class proportion
table("\nFrequency" = factor(train_image_array_gen$classes)

) %>%
prop.table()

```

```{r}

# Set Initial Random Weight
tensorflow::tf$random$set_seed(1)
model <- keras_model_sequential(name = "simple_model") %>%

# Convolution Layer

3



layer_conv_2d(filters = 16,
kernel_size = c(3,3),
padding = "same",
activation = "relu",
input_shape = c(target_size, 3)
) %>%

# Max Pooling Layer
layer_max_pooling_2d(pool_size = c(2,2)) %>%

# Flattening Layer
layer_flatten() %>%

# Dense Layer
layer_dense(units = 16,

activation = "relu") %>%

# Output Layer
layer_dense(units = output_n,

activation = "softmax",
name = "Output")

model
```

```{r}
model %>%

compile(
loss = "categorical_crossentropy",
optimizer = optimizer_adam(lr = 0.01),
metrics = "accuracy"

)

# Fit data into model
history <- model %>%

fit(
# training data
train_image_array_gen,

# training epochs
steps_per_epoch = as.integer(train_samples / batch_size),
epochs = 30,

# validation data
validation_data = val_image_array_gen,
validation_steps = as.integer(valid_samples / batch_size)

)

plot(history)
```
```{r}
val_data <- data.frame(file_name = paste0("Data_1/train/", val_image_array_gen$filenames))
%>% mutate(class = str_extract(file_name, "AK|BCC|BKL|DF|MEL|NV|SCC|VASC"))

4



head(val_data, 10)
```
```{r}
# Function to convert image to array
image_prep <- function(x) {

arrays <- lapply(x, function(path) {
img <- image_load(path, target_size = target_size,

grayscale = F # Set FALSE if image is RGB
)

x <- image_to_array(img)
x <- array_reshape(x, c(1, dim(x)))

})
do.call(abind::abind, c(arrays, list(along = 1)))

}
```

```{r}
test_x <- image_prep(val_data$file_name)

# Check dimension of testing data set
dim(test_x)
```

```{r}
pred_test <- model %>% predict(test_x) %>% k_argmax()
head(pred_test, 10)
# Convert encoding to label
decode <- function(x){

case_when(x == 0 ~ "AK",
x == 1 ~ "BCC",
x == 2 ~ "BKL",
x == 3 ~ "DF",
x == 4 ~ "MEL",
x == 5 ~ "NV",
x == 6 ~ "SCC",
x == 7 ~ "VASC",
)

}

pred_test <- sapply(pred_test, decode)

head(pred_test, 10)
```

```{r}
confusionMatrix(as.factor(pred_test),

as.factor(val_data$class)
)

```

5


```{r}
model_big <- keras_model_sequential() %>%

# First convolutional layer
layer_conv_2d(filters = 32,

kernel_size = c(5,5), # 5 x 5 filters
padding = "same",
activation = "relu",
input_shape = c(target_size, 3)
) %>%

# Second convolutional layer
layer_conv_2d(filters = 32,

kernel_size = c(3,3), # 3 x 3 filters
padding = "same",
activation = "relu"
) %>%

# Max pooling layer
layer_max_pooling_2d(pool_size = c(2,2)) %>%

# Third convolutional layer
layer_conv_2d(filters = 64,

kernel_size = c(3,3),
padding = "same",
activation = "relu"
) %>%

# Max pooling layer
layer_max_pooling_2d(pool_size = c(2,2)) %>%

# Fourth convolutional layer
layer_conv_2d(filters = 128,

kernel_size = c(3,3),
padding = "same",
activation = "relu"
) %>%

# Max pooling layer
layer_max_pooling_2d(pool_size = c(2,2)) %>%

# Fifth convolutional layer
layer_conv_2d(filters = 256,

kernel_size = c(3,3),
padding = "same",
activation = "relu"
) %>%

# Max pooling layer
layer_max_pooling_2d(pool_size = c(2,2)) %>%

# Flattening layer
layer_flatten() %>%

6



# Dense layer
layer_dense(units = 64,

activation = "relu") %>%

# Output layer
layer_dense(name = "Output",

units = output_n,
activation = "softmax")

model_big
```

```{r}
model_big %>%

compile(
loss = "categorical_crossentropy",
optimizer = optimizer_adam(lr = 0.001),
metrics = "accuracy"

)

history <- model %>%
fit_generator(
# training data
train_image_array_gen,

# epochs
steps_per_epoch = as.integer(train_samples / batch_size),
epochs = 50,

# validation data
validation_data = val_image_array_gen,
validation_steps = as.integer(valid_samples / batch_size),

# print progress but don't create graphic
verbose = 1,
view_metrics = 0

)

plot(history)
```

```{r}
pred_test <- predict_classes(model_big, test_x)

head(pred_test, 10)
# Convert encoding to label
decode <- function(x){

case_when(x == 0 ~ "AK",
x == 1 ~ "BCC",
x == 2 ~ "BKL",
x == 3 ~ "DF",
x == 4 ~ "MEL",
x == 5 ~ "NV",

7



x == 6 ~ "SCC",
x == 7 ~ "VASC",
)

}

pred_test <- sapply(pred_test, decode)

head(pred_test, 10)
```

```{r}
confusionMatrix(as.factor(pred_test),

as.factor(val_data$class)
)

```

```{r}
knitr::stitch('myscript.r')
```

The R session information (including the OS info, R version and all packages used):

sessionInfo()

R version 4.2.2 (2022-10-31 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19044)
##
Matrix products: default
##
locale:
[1] LC_COLLATE=English_United States.utf8 LC_CTYPE=English_United States.utf8
[3] LC_MONETARY=English_United States.utf8 LC_NUMERIC=C
[5] LC_TIME=English_United States.utf8
##
attached base packages:
[1] stats graphics grDevices utils datasets methods base
##
loaded via a namespace (and not attached):
[1] Rcpp_1.0.9 lattice_0.20-45 png_0.1-7 digest_0.6.30 grid_4.2.2
[6] jsonlite_1.8.3 magrittr_2.0.3 evaluate_0.18 highr_0.9 stringi_1.7.8
[11] rlang_1.0.6 cli_3.4.1 rstudioapi_0.14 Matrix_1.5-1 reticulate_1.26
[16] tools_4.2.2 stringr_1.4.1 tinytex_0.42 xfun_0.34 fastmap_1.1.0
[21] compiler_4.2.2 htmltools_0.5.3 knitr_1.40

Sys.time()

[1] "2022-11-17 03:38:11 IST"

8

