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Chapter 1

Why study causation?

The primary references for the content of this chapter are [Pea13], [H+08], and [Pet15].
The Figure 1.3 has been taken from [Mes12]. The other figures have been taken from
[JPJ16] and [Pet15].

The importance of learning causality can be best understood when one goes through
some examples where the traditional ideas of statistics cannot be applied to arrive at an
answer. A few illustrations have been given in this chapter to signify the importance of
developing causal inference along with other statistical methods.

1.1 Weekly exercise and cholesterol levels
Assume a hypothetical study that was conducted to measure weekly exercise and choles-
terol in various age groups. This data was plotted in two ways. One approach was to
plot the data without segregating participants by age, while the other approach was to
plot the data after being segregated by age.

The inference drawn from 1.1 is that an increase in exercise leads to an increase
in cholesterol levels and hence patients with the problem of high cholesterol should be
recommended not to exercise. On the contrary, 1.2 concludes that though the cholesterol
levels increase with age, the amount of cholesterol we have at a particular age can be
minimized with exercise. So given a patient with high cholesterol, should we or should
we not recommend exercise or in other words should we believe in 1.1 or 1.2 ?

To answer this question we need to know the “story" behind the data generation
i.e. how the data was generated. Assume that biological evidence suggests that the
total cholesterol in a person increases naturally (due to some biological process) with age
regardless of the amount of exercise he/she does. In such a scenario, it is clear that we
need to believe in the segregated plot and recommend exercise to patients suffering from
high cholesterol. Here, the inference we have drawn about the data we observed is not
based on the numerical data alone but on the data generation process i.e. what caused
the data to make it look the way it is. This problem couldn’t haven been answered
without this non-statistical piece of evidence.

Remark 1.1. Note that there can exist evidence which supports analysis of unsegregated
data over segregated data.
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Figure 1.1: Exercise-cholesterol
data without age segregation
[JPJ16].

Figure 1.2: Exercise-cholesterol
data with age segregation [JPJ16]

Figure 1.3: Correlation between Countries’ Annual Per Capita Chocolate Consumption
and the Number of Nobel Laureates per 10 Million Population [Mes12, Figure 1].

1.2 Chocolates and Nobel Prizes
Messerli (add reference) conducted a study in which a country’s per capita chocolate
consumption in kg per year was plotted against the number of noble prize winners per
ten million people. A high correlation ( r = 0.791)is observed between the two variables
as shown in 1.3.
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Figure 1.4: Claim: Eating choco-
late produces Nobel prize winners.

Figure 1.5: Claim: Nobel prize win-
ners are more likely to eat lots of
chocolates.

Figure 1.6: Causal interpretations [Pet15]

Two different causal interpretations have been made out of the observed correlation
by two different sources as shown in 1.6. (add ref) Given the correlation in 1.3 how do
we arrive at the right answer? The possible interpretations of the data are as follows:

1. An increase in chocolate consumption causes an increase in number of Nobel lau-
reates in the country.

2. Increase in Nobel laureates in a country causes an increase in chocolate consumption

3. The plot describes a correlation between variables which are not cause-effect pairs.

It is obvious to most of us that the correlation shown above cannot be a cause-
effect relationship. Most of us might have made an intelligent guess that the observed
association might be due to the existence of latent variables. But the question is whether
our hypothesis can be proven mathematically.

Even though the example above gives us an intuition of whether or not the vari-
ables are causally related, there are many real life scenarios where it is not obvious to
make an intelligent guess about whether or not the observed correlation implies a causal
relationship. For instance, a strong correlation between exercise and cholesterol levels
did not imply that an increase in exercise leads to an increase in cholesterol. Here the
non-existence of causal relationship was neither obvious nor intuitive.

1.3 Randomized Control Trials
Randomized controlled trials (RCT) are studies which involve the use of a control group
(hence the word “controlled”) which acts as the reference group in the study. The term
“randomized" implies that subjects under study are randomly assigned either to the
control group or to the treatment group. The design of a RCT study is such that it
constitutes the primary tool for identifying causal relationships. But such experiments are
in many cases unethical, too expensive or technically impossible. Hence this lead to the
development of causal discovery methods to infer causal relationships from uncontrolled
data. (add ref)
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An example will help us better understand the limitations of randomised control trials.
It is well known that RCTs can be used to test for the significance of a new drug against
a placebo or a standard treatment because, here we can intervene on the control group.
Now consider the scenario where we have been asked to determine the cause and effect
relationship between the variables “waiting time between eruptions" and the “duration of
the eruption" for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA
i.e. we want to determine which one of the two hypotheses is true:

1. The waiting time between the two consecutive eruptions e1 and e2 determines the
eruption time for e2 i.e. how long it erupts

2. How long a given geyser erupts determines how long it will take for the next eruption
to occur.

Clearly, it is impossible to intervene on the eruption time or the time duration between
eruptions to perform a RCT. Here, we can only be provided with observational data. So
the natural question is as to whether there are methods to interpret causal relations from
such purely observational or uncontrolled data.

The following questions arise from the examples given above:

1. Not all inferences can be drawn from the data alone. In order to arrive at sound
conclusions, it is important to understand the data generation process. Are there
statistical methods that take into consideration the data generation process to arrive
at a conclusion?

2. Correlation may or may not imply causation. Then how do we mathematically prove
the existence (or non-existence) of a cause-effect relationship between variables.

3. What is the alternative procedure or method if RCT cannot be employed to conclude
the cause and effect relationship?

These problems mentioned above are addressed by causal inference (and not tradi-
tional statistics) where our aim is to model causal relationships found in data that we
obtain by taking into consideration the data generation process. Causal inference is a
paradigm that gives us the unprecedented advantage of understanding systems under
various interventions. For eg. it lets us answer the question “What would be the
eruption time if we hypothetically intervene on the waiting time between consecutive
eruptions?”.

Objective:
The focus of the report is on determining the causal structure of the system under con-
sideration using purely observational data. The details of the assumptions we wish to
follow is given in the next chapter. We will mainly focus on the two variable case, though
some of the proofs are for the general n variable case.
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Chapter 2

Causal Models and Assumptions

The content of this chapter has been taken from [P+17], [Pea13], [Pet12], [Nea03], [Pea]
and [dW].

As mentioned in the previous chapter, causal inference deals with various kinds of
problems related to cause and effect relationships like “What would be the outcome if
I (hypothetically) intervene on a system?”, "What would have been the outcome had I
used a different approach?” , “Which variables are causally effecting a given variable?”
etc.

2.1 Causal learning and causal reasoning
Understanding the relationship between causal inference and causal learning is made
easy if one understand the relation between probability theory and statistical reasoning.
Probability theory is the branch of mathematics which allows us to reason about various
outcomes that we observe by the end of a random experiment, provided that we are given
a mathematical structure beforehand. Structural learning on the other hand deals with
the inverse problem of identifying the properties of the unknown underlying mathematical
structure given the outcomes of the random experiment.

Similarly, causal reasoning helps to explain the outcomes, observations and inter-
ventions of a random experiment given the underlying mathematical structure (or the
causal model). Conversely, causal learning is its inverse problem which pertains to
predicting the underlying unknown model given the data from various observational and
interventional studies. Causal leaning subsumes statistical learning which makes the for-
mer harder than the latter. The complexity of statistical learning stems from the fact that
we are trying to solve an inverse problem based on empirical data alone. A finite set of
observations never has all the information about the underlying mathematical structure.
This makes the problems of statistical learning ill-posed. Along with the ill-posedness
of statistical learning, causal learning has an additional layer of ill-posedness as we are
usually unable to determine the causal structure of a system even after being provided
with complete information about the observational distribution. The ideas discussed in
this section can be summarized using the following diagram
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Figure 2.1: Various terminologies used in this report [P+17, Figure 1.1].

2.2 Causal Models
There are two ways of giving a causal structure to a system we want to study. One choice
is to define a structural equation model (SEM) while the other to to define a causal
Bayesian network. While both the models mentioned above are probabilistic graphical
models which are used to model causality, there is a fundamental difference in how each
model assumes the way nature’s laws work. In order to understand the philosophy behind
each model, it is important that we know how each models is defined.

Definition 2.1. Structural Equation Models (S.E.M)
A structure causal model is a system of equations defined as follows:

Xi = fi(PAi, εi) such that εi ⊥ PAi for all i ∈ {1, 2, . . . , n} (2.1)

Where X = {X1, X2, . . . , Xn} represents a set of random variables. PAi is called the
parent set of Xi which is defined as the subset of X which directly determines the value of
Xi. εi represents noise or disturbance which is independent of the variables in the parent
set.2.1 is called a causal model if it describes the process generating the data.

Remark 2.1. Xi and εi for all i ∈ {1, 2 . . . , n} are random variables.

The graphical model or the causal graph associated with the given SEM can be
constructed by considering the set random variablesX as set containing node and drawing
directed edges from parents of Xi to Xi for all i.

Definition 2.2. Markov Condition
Let P be the joint distribution defined on set of variables X = {X1, X2, . . . Xn}. Let
G = (X,E) be a directed acyclic graph(DAG) with nodes from set X and edges from
set E (E is a subset of X × X.). Then the pair (G,P) is said to satisfy the Markov
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condition if for each variable Xi in X, {Xi} is conditionally independent of set of all its
non-descendants (NDi) given the set of all its parents (PAi). This is denoted as:

Xi ⊥ NDi | PAi (2.2)

Definition 2.3. Bayesian Network (B.N)
A pair (G,P) is called a Bayesian network if it satisfies the Markov condition.

Definition 2.4. Causal Bayesian Network
A causal Bayesian network is a Bayesian network which allows us to answer interventional
queries. The detailed definition can be found in Causality by Judea Pearl.

2.3 S.E.Ms vs causal B.Ns
As it was mentioned briefly earlier, the two graphical models have a fundamental differ-
ence in their assumptions about how nature works. SEMs rely on the assumption that
nature’s laws are deterministic while error surfaces due to our ignorance of underlying
boundary conditions. On the contrary, causal B.N.s assume all relationships given in
definition to be inherently stochastic.

Along with a fundamental difference in the philosophy behind the models, there is also
a difference in the kind of question these models are generally utilized to answer. A SEM
is constructed if the objective is to identify the factors determining a given value. On the
other hand, a causal B.N. is constructed when one is interested to obtain interventional
probabilities.

2.3.1 Our primary focus

Though a brief introduction to causal Bayesian networks has been given, it is worth noting
that understanding SEMs is the primary aim of this report. This report will mainly focus
on scenarios when cause and effect (2 variable case) can be distinguished by looking at
the joint distribution alone.

2.4 Assumptions for causal inference
Now that we have a basic idea about what an SEM is, it is good to pause for a while so
that we can better understand the assumptions that we have seen so far.

2.4.1 Independence of cause and mechanism

This principle of independence between cause and mechanism is better explained with
the help of an example. Consider a hypothetical position where have to determine the
causal structure of the altitude(A)-temperature(T ) relationship.

The first idea we would get is to try and identify the effect of interventions. Con-
sider a hypothetical world where we are able to intervene on the altitude values (A) i.e.
we can alter the value of A so as to observe how T changes. Suppose that this lead
to a drop in temperature of the place. Keeping this result in mind, we apply a second
intervention where we change the value of T to determine its effect on A. If we observe
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no change in altitude values after the second intervention, then we can conclude that
altitude determines the temperature of the place.

However, how is it that the description of such an intervention is considered reasonable
given that it is not always possible to intervene on real life systems. This intervention
is reasonable in spite of the impossibility to intervene at all times because we assume
that changing the altitude does not change the physical mechanism which generates the
temperature output for a given place. To understand the physical process mentioned just
now, suppose for simplicity that temperature of a place is determined by an exhaustive
set containing A and 2 other terms (K,L). So nature takes as input the instantaneous
values of A,K,L, undergoes a natural process (like a function taking inputs) and finally
gives the output which is the instantaneous temperature of the place. So our assumption
states that even if we intervene on A (which determines temperature), the natural process
(which takes inputs to give out temperature) generating the temperature remains the
same. But note that intervening on A changes the value T if A causes T

Remark 2.2. If altitude determines temperature and not vice-versa is true, then the
corresponding SEM would look as follows:

A := ε1

T := f(A, ε2)

By the definition of causal graph given earlier, the graph corresponding to the SEM would
be:

A −→ T

We can formalize our intuition in the form of two postulates given below. If the
statement A −→ T is true, then

1. it is possible to intervene on A (i.e. change the distribution of A in the SEM)
without changing the natural process f that generates T given the value of A
(f(t|a)).

2. Cause and the mechanism leading to the effect are autonomous or invariant
mechanisms in the world

The principle of cause and mechanism is for the case of two variables (one cause
and the other effect). A more general version of this principle for n variables, which is
mentioned below, is called as the principle of independent mechanisms.

Definition 2.5. Principle of independent mechanisms
The causal generative process of a system’s variables is composed of autonomous modules
that do not inform or influence each other.
In the probabilistic case, this means that the conditional distribution of each variable
given its causes does not inform or influence the other conditional distributions. In case
we have only two variables, this reduces to an independence between the cause distribution
and the mechanism producing they effect distribution.
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2.4.2 DAG assumption

A crucial assumption made through out the report is the acyclicity of the graphs corre-
sponding to SEMs we come across. This is because the assumption of acyclicity gives us
an opportunity to simplify our system using the following property that all DAGs satisfy.

Proposition 2.1 (Existence of a “source” node). Every G which is a DAG has at least
one node with no incoming edges.

Proof. On the contrary, let us assume that every node of a given DAG has at least one
incoming edge into every node of the graph. Pick any vertex V . Hypothesis claims that
there exists V−1 such that V−1 −→ V is a directed edge of the graph.Continuing this
process generates a sequence of nodes enumerated as V−2, V−3 . . . V−k . . . . Due to the
finite number of nodes, there exists V−j which we come across for the first time such that
V−j = V . Hence we have:

· · · −→ V−j = V −→ V−(j−1) −→ · · · −→ V−2 −→ V−1 −→ V

Above sequence produces a cycle which leads to a contradiction.

Remark 2.3. The nodes of a DAG with no incoming edges are called "source nodes"
due to the reason explained below.

Example 2.1. Consider the following SEM with mutually independent noise distribu-
tions εi:

X1 := ε1 where ε1 ∼ N (0, 1)

X2 := 5X1 − ε2 where ε2 ∼ N (0, 1)

X3 := 2X1 + ε3 where ε3 ∼ N (1, 1)

The corresponding graph would be:

X3 ←− X1 −→ X2 (2.3)

(2.3) is a DAG with the source node X1. This node acts as a source in the sense that we
can start by sampling a point from the distribution ε1 to obtain the realization for X1.
This realized value can be used to find the realization of the random variables X2 and
X3 after sampling points from their respective noises. Repeating this procedure several
times will give a large sample of (X1, X2, X3) values from which we can procure a joint
density for the variables X1, X2, X3

Hence the existence of a source node along with the independence of noise variables
allows us to compute the joint distribution of graph nodes given the distribution of noise
variables. 4

2.4.3 Jointly independent noise variables

This is another assumption we make throughout the report. One advantage of this
choice can be seen in Example 2.1 where we could sample values from distributions εi
independently of one another due to the assumption of mutual independence of noise.

The other motivation behind the choice of mutually independent noise terms is linked
to the principle of independence between cause and mechanism. To understand this
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relation, the following interpretation is useful:
For a given equation X = f(Y ; ε) from an SEM, sampling a point from ε makes the
equation mentioned a deterministic one. Call this X = f ε(Y ). Therefore the realization
of a noise ε can be considered as the process of choosing one of the many possible states
f ε.

Now, assume that there exists a directed edge from the node Xj to Xk. Then the
equations corresponding to Xj and Xk look as follows:

Xk = f(PAk) + ε1 where Xj /∈ PAk
Xj = g(PAj) + ε2 where Xk ∈ PAj

Let us assume, for instance that ε1 and ε2 are dependent on each other in such a way that
identifying the state at node Xk determines the state at the other node. This would imply
that knowing the state f s at node Xk determines the state gt at node Xj when Xk causes
Xj. This violates the independence of cause and mechanism as it implies in this present
example that change in distribution of Xk should be independent of the mechanism g
that generates the output Xj.

To summarize, the assumption of mutually independent noise variables is made in
order to avoid the situations where dependence of noise can violate the principle of inde-
pendence between cause and mechanism.

11



Chapter 3

Learning cause and effect from data

The following chapter is based on [P+17], [Pet12], [Pea13], [Nea03], [EW08], [JSK17],
[H+08], [JS10] and [JPS11].

Prior to understanding how cause and effect variables are identified, we need to fa-
miliarize ourselves with some terminology and concepts. This is the purpose of the first
section of this chapter. The second section provides an outline of the state-of-the art
techniques available to distinguish cause from effect in the two variable case.

3.1 Relation between BNs and SEMs
As pointed out in the previous chapter, every SEM can be associated with a causal graph
where a directed edge is drawn from vertex X to vertex Y if the value of the latter is
determined by the former. In the two variable case, the only possible causal graphs are:

X −→ Y ⇐⇒ X causes Y

X · · Y ⇐⇒ X ⊥ Y

Though the concept of visualizing how the graph looks like is not very important in
the two variable case, which is our primary concern, it is clear that as the number of
variables increases the complexity of the graph is bound to increase. Even though the
graphical representation doesn’t come into picture very often in our report, it is important
to understand the relation SEMs have with graphical models. This section tries to provide
a brief introduction in this direction. Few theorems have been mentioned without proofs.

3.1.1 Bayesian Networks represent joint distribution

We have already been introduced to the definition of a B.N in the previous chapter.
Bayesian networks are a class of multivariate statistical models with a wide range of
applications in science and technology. One important application of these networks, as
pointed out earlier, is in causal learning where the causal relations are encoded in the
structure or topology of the network. Bayesian networks are important because they
provide us with an efficient representation of the joint distribution when the number of
variables is very large to handle. In addition to that, it is an important tool used to do
Bayesian inference on a large number of variables. In this section, we focus on under-
standing why B.Ns are considered as representatives of joint distributions under large
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Figure 3.1: DAG illustrating
Markov condition [Nea03]

instances. This is made possible since B.Ns exploit the Markov condition to represent
large instances effectively. Before going further into the topic, it is good to go have a
refresh on Markov condition using an example.

Example 3.1. Consider the DAG given in the figure (add ref). The following condi-
tional independence assertions can be made with respect to the given DAG using Markov
condition.

Node PA Conditional independence
C { L } C ⊥ { H,B,F } | { L }
B { H } B ⊥ { L,C } | { H }
F { B,L } F ⊥ { H,C } | { B,L }
L { H } L ⊥ { B } | { H }

4

Each nodeX of the graph can be associated with a conditional probability distribution
(CPD) which is the conditional density P (X|PA) where PA denotes the parents of X. If
the node X has no parents, then the associated density is just the unconditional density
P (X).

Example 3.2. The CPDs associated with the nodes F,C,B, L,H of DAG in 3.1 are as
follows:

F −→ P (f |b, l) C −→ P (c|l) B −→ P (b|h) L −→ P (l|h) H −→ P (h)

4

Remark 3.1. All the graphs we consider are DAGs unless otherwise stated.

Theorem 3.1. If (G,P) satisfies the Markov condition, then P is equal to the product
of its conditional distributions of all nodes given values of their parents, whenever these
conditional distributions exist.

Proof. We prove for the case when P is discrete. Since G is a DAG, there exists a
topological ordering of its nodes which we denote by X1, X2, X3, . . . Xn. We prove the
theorem by induction on n.

13



• The statement is true for the case of n = 1 because X1 is a root node due to
topological ordering.

• The following is the induction hypothesis:

P(X1 = x1, . . . , Xn = xn) = P(X1 = x1|PA1 = pa1) . . .P(Xn = xn|PAn = pan)

• We want to prove for the case of n+ 1 i.e. we want to prove that

P(X1 = x1, . . . , Xn+1 = xn+1) = P(X1 = x1|PA1 = pa1) . . .P(Xn+1 = xn+1|PAn+1 = pan+1)

1. Case 1: P(x1, x2, . . . , xn) = 0
then, P(x1, x2, . . . , xn+1) = P (xn+1|x1, x2, . . . , xn)× P(x1, x2, . . . , xn) = 0
Also, by induction hypothesis, there exists a k such that P(xk|pak) = 0.
Hence, the result holds for n+ 1

2. Case 2: P(x1, x2, . . . , xn) 6= 0

Then
P(x1, x2, . . . , xn+1)

P(x1, x2, . . . , xn)
= P(xn+1|x1, x2, . . . , xn)

Using induction hypothesis, topological ordering of nodes and the observation
above can prove the desired result.

Remark 3.2. 1. Observe that the our proof depends on the assumption that P(pai) 6=
0 for i ∈ {1, 2, . . . , n}

2. The theorem 3.1 is an important one because it reduces the trouble of determining
a huge number of probabilities to that of determining relatively few.

3. The theorem states that if we start with a joint distribution satisfying the Markov
condition with respect to some DAG, then that joint distribution can be decomposed
as the product of conditional distributions.

Theorem 3.2. Let a DAG G be given in which each node is a random variable, and let
a discrete conditional probability distribution of each node given values of its parents in G
be specified. Then the product of these conditional distributions yields a joint probability
distribution P of the variables, and (G,P) satisfies the Markov condition

Proof. Order the nodes according to an ancestral ordering. Let X1, X2 . . . , Xn be the
resultant ordering. Now define a function P(x1, x2 . . . , xn) as the product of all specified
conditional densities P(xi|pai). So,

P(X1 = x1, . . . , Xn = xn) := P(X1 = x1|PA1 = pa1) . . .P(Xn = xn|PAn = pan) (3.1)

Claim - 1: P(x1 . . . xn) is a well defined joint density function.∑
∀x1

· · ·
∑
∀xn

P(x1, . . . , xn) = (3.2)

∑
∀x1

[∑
∀x2

[∑
∀x3

· · ·
∑
∀xn

[P(xn|pan)]P(xn−1|pan−1) . . .

]
P(x1|pa1)

]
P(x1|pa1) (3.3)
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The claim can be proved by observing that
∑
∀xi P(x1|pai) = 1∀i.

Claim - 2: Markov condition is satisfied.
Order the nodes so that all non-descendants of Xk proceed Xk in the ordering. For such
an ordering, we have NDk = {X1 . . . Xk−1} and Dk = {Xk+1 . . . Xn} for the node Xk.
(here, NDk represents the set of non-decedents of Xk while Dk represents the set of
descendants of Xk

We wish to prove the following:

P(xk|ndk, pak) = P(xk|pak)∀k ∈ {1, 2 . . . , n}

Since PAk ⊂ NDk, it is enough to prove that

P(xk|ndk) = P(xk|pak)∀k ∈ {1, 2 . . . , n}

Now, we have

P(Xk = xk0|NDk = ndk0) =
P(xk0, ¯ndk0)

P( ¯ndk0)
where ¯ndk0 = (x10, x20 . . . , xk−1,0)

Careful simplification of above equation proves the statement. During simplification we
use the fact that product of conditionals associated with a subset of the nodes which form
a sub-graph of G also give a valid density.

Remark 3.3. 1. Notice that the theorem requires the given conditional distributions
to be discrete. It mostly holds for the continuous case but not always.

2. This theorem states is the opposite of the previous theorem. It states that if we
start with conditional distributions, then the product of these conditionals is a joint
pdf satisfying the Markov condition.

It is important to note that there exist B.Ns whose nodes are all continuous ran-
dom variables (continuous Bayesian Networks) and those whose nodes consist of both
continuous and discrete random variables (hybrid random variables).

3.2 Structural Identifiability
Causal learning, as mentioned earlier is an ill-posed problem at two levels. One of the
issues is that looking at a joint density is not always sufficient to identify the causal
structure i.e. to obtain the causal relations. But, there are some instances where the
joint density Px,y is sufficient to tell cause from effect. This is when we say that the
“structure is identifiable” from the joint distribution. The following theorem explains
why causal structure is not always identifiable using the the joint density alone.

Theorem 3.3. For every joint distribution PX,Y of two real valued variables X, Y , there
is at least one SEM in each of the possible causal directions, i.e. there exist measurable
functions f , g and noise variables N1, N2 such that:

• Y = f(X,N1) ; X ⊥ N1

• X = f(Y,N2) ; Y ⊥ N2
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Proof. We wish to construct an SEM for the graph X −→ Y using the density PX,Y . For
that we use inverse of cumulative distribution function (F−1Y |x) as shown below.

Define Y = f(x, n1) := F−1Y |x(n1) such that FY |x(y) = P(Y ≤ y|X = x)

Here we assume N1 to be normally distributed on [0, 1] and independent of X. This gives
an SEM supporting the mechanism X −→ Y
The same steps can be followed to obtain an SEM supporting Y −→ X.

Remark 3.4. This theorem states that there exists at least one SEM that represents the
joint distribution at hand but it does not claim that the SEM given above describes the
causal generative process all the time. There can be multiple SEMs which describe the
same joint density but not all explain the cause-effect mechanism involved.

3.2.1 Assumptions that provide identifiability

Now, our next step is to identify the conditions or assumptions under which the two vari-
able causal structure can be recovered from the joint density. Note that these assumptions
are made in addition to the SEM assumptions that we already saw. One possible ap-
proach, that we employ here, is to restrict the class of functions f and/or to restrict the
class of noise distributions. It is worth mentioning that independence of noise renders
causal directions identifiable only after restricting the function class. After stating these
facts, it is important to notice that theorem 3.3 has no restrictions placed on its noise
and function class. Therefore, SEMs in both the directions could be produced.

3.3 Identifiability results
Identifiability results are the theorems that prove that the causal direction is identifiable
under a certain set of assumptions or conditions. Current section provides examples of
some of such identifiability results. The state-of-the-art models for causal discovery in
the bivariate case are:

• Additive Noise Models (ANMs)

• Post Non-Linear Models (PNL models)

• Information Geometric Causal Inference models (IGCI models)

Another important class of models constitutes the class of Linear Non-Gaussian Ad-
ditive Noise Models (LiNGAM). This is so because LiNGAM is commonly applied
to data that is observed to be continuous valued. This is not necessarily because the lin-
ear model describes the process well, but because these models are well understood and
easy to work with. However, LiNGAM identifies the causal structure if the data we are
working with fits a LiNGAM model reasonable well. This section provides an overview
of ANMs, PNLs and IGCI models. The next chapter will be devoted for LiNGAM.
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3.3.1 Additive Noise Models

Additive noise models were proposed to deal with non-linear relationships. The model
assumed that effect can be expressed as a functional model of the cause X and additive
noise N such that the cause and additive noise are independent of each other. Mathe-
matically, this represents the following model:

Y = f(X) +N ; X ⊥ N

The model is learnt by performing regression in both directions and testing the indepen-
dence between the assumed cause and noise for each direction. Decision rule choose the
direction with “less dependence” as the true causal direction. Given below is a step by
step for model estimation.

Model Estimation

1. Test whether the variables X and Y are statistically independent.

2. If X and Y are not independent, then test whether the model y = f(x) + n is
consistent with the data by doing a non-linear regression of y on x. This gives us
the estimate f̂ of f . These estimates can be used to calculate the corresponding
residuals n̂ = y − ˆf(x). Test for independence between residuals(n̂) and x. The
model can be accepted if the test supports independence between variables. If this
is not the case, then the same procedure is applied to the reverse model i.e. to
x = g(y) + n′

3. Above steps result in one of the given possible scenarios:

• x ⊥ y =⇒ we infer that a causal relation between X and Y does not exist.

• x 6⊥ y and both directional models are accepted =⇒ either model may be
correct but we cannot infer it from the data.

• x 6⊥ y and we are able to accept exactly one direction (and reject the other)
=⇒ the accepted model gives the the correct causal direction.

• x 6⊥ y and neither direction is consistent with data =⇒ the generating
mechanism is more complex and can’t be described using this model.

Remark 3.5. The above estimation method can be generalized to the case where N
number of variables are involved. The optimality of the model is not claimed here.

Do ANMs admit the true causal direction?

The earlier estimation procedure assumed the true causal direction to be the unique
direction for which an ANM exists. However it is natural to wonder if our data would
ever admit an ANM in the wrong causal direction. The question being posed is elaborated
below:
Suppose that Y −→ X is the correct causal structure with respect to some non-ANM
model for a given phenomenon. Then would the distribution corresponding to this causal
model exhibit an additive noise model in the wrong direction i.e. from X −→ Y ?

This question was addressed by DJanzing and BSteudel in their paper titled “Justify-
ing additive-noise-model based causal discovery via algorithmic information theory” (add
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ref). Using algorithmic information theory and kolmogorov complexity, it has been shown
that the above mentioned situation is a rare scenario which requires p(y) and p(x|y) to be
tuned in a specific way (See the result below). Fortunately this specific relation between
the probabilities does not occur in our scenario due to our assumption of independence
between cause and mechanism. The following untypical relation (3.4) has to be followed
to obtain an ANM in the wrong direction. The relation is stated without proof because
my intention is only to give the reader an understanding of how unlikely it is for ANMs
to occur in the wrong causal direction as mentioned earlier.

∂2

∂y2
logp(y) = − ∂2

∂y2
logp(x|y)− 1

f ′(x)

∂2

∂x∂y
logp(x|y) (3.4)

Discrete Additive noise models

The additive models we have discussed about so far were for continuous valued random
variables. Surprisingly, additive noise models can be defined on random variables which
take values in a ring (like Z, Z/nZ). ANMs defined on random variables with countable
(discrete) support are called discrete additive noise models (DANMs).

DANMs over Z are defined in case where variables under consideration are taking
integer values. For example, in the case of a variable recording the number of kids a
family has. On the other hand, DANMs defined on Z/nZ have a inherent cyclic structure
like the variable “Day of the week”. This is a cyclic variable with a cycle of length n.
The models of the former type are called integer models while the latter are called
cyclic models.

• Integer Models: Suppose that X and Y are random variables taking values in Z.
An additive noise model is said to exist from X to Y if there exists f : Z −→ Z
and a discrete noise N taking values in Z such that the joint pdf admits the ANM:

Y = f(X) +N ; N ⊥ X and n(0) ≥ n(j)∀j

• Cyclic models: Suppose that X and Y are random variables taking values in a
periodic fashion. Given a probability space (Ω,F ,P), a function f : Ω −→ Z/nZ
is called an m-cyclic random variable if X−1(k) ∈ F ∀k ∈ Z/nZ.
Suppose that X is am- cyclic random variable while Y is a - cyclic random variable.
We say that there exists an ANM from X to Y if there is a function f : Z/mZ −→
Z/Z and a -noise N such that

Y = f(X) +N ; N ⊥ X and n(0) ≥ n(j) ∀j

We earlier saw that it is very unlikely for the ANM to be reversible in the continuous
case. As expected, it has been proved by JPeters, DJanzing and BScholkopf that in-
vertibility of above mentioned causal models is also very unlikely. One can refer to their
paper titled “Causal Inference on Discrete Data using Additive Noise Models” for further
information. As done previously, the direction in which the causal model is obtained, is
considered as the true causal direction.
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3.4 Data Analysis
We will now try to identify the cause and effect relationship in a real data set by fitting
an additive noise model to the data. For this we use the “Old Faithful Geyser Data”
available on R. The data involves the variables “waiting time between distributions in
minutes (waiting)” and “duration of a given eruption in minutes (eruption)” for the Old
Faithful geyser in Yellowstone National Park, Wyoming, USA. We have come across this
example in the first chapter as well. There, we observed that identifying cause and effect
relationship in this particular case is not very obvious. Hence we now try to apply an
ANM in order to obtain the causal structure.

> library(MASS)
> data("faithful")
> head(faithful)

eruptions waiting
1 3.600 79
2 1.800 54
3 3.333 74
4 2.283 62
5 4.533 85
6 2.883 55

A bunch of packages needed to be installed before using the command that fits the data
with an ANM.

> if (!requireNamespace("BiocManager", quietly = TRUE))
+ install.packages("BiocManager")

> BiocManager::install("graph")

> if (!requireNamespace("BiocManager", quietly = TRUE))
+ install.packages("BiocManager")

> BiocManager::install("RBGL")

> install.packages("pcalg")
> library(pcalg)

> install.packages("CompareCausalNetworks")
> library(CompareCausalNetworks)

> install.packages("kernlab")
> library(kernlab)

After downoading the packages above, use the getParents() to fit an ANM model.

> getParents(faithful,method = "bivariateANM")
eruptions waiting

eruptions FALSE TRUE
waiting FALSE FALSE

19



The output obtained is the adjacency matrix of the correponding causal graph. Here,
we have a causal graph from “eruption” to “waiting”. Conclusion: We can conclude
that the eruption time of a given geyser determines the amount of time it takes for the
next geyser to erupt i.e. eruption time determines the waiting time for the consecutive
eruption. Therefore the causal structure is :

eruption −→ waiting

The other two classes of models are briefly explained below.

3.4.1 Information geometric causal inference (IGCI) based mod-
els and Post Non Linear Models (PNL)

A breif introduction to these models has been provided considering their importance in
causal discovery.

Post Non-Linear Models

This model, just like the ANM, assumes the effect variable to vary with the cause in
a non-linear fashion along with some additive internal noise. The difference lies in the
assumption of an external non-linear distortion in the case of PNL models.

Y = f(g(x) +N) ; N ⊥ X (3.5)

The assumptions involded in a PNL can be summarized as follows:

1. effects are non-linear transformations of causes with some “inner” additive noise.

2. This has to be followed by an external distortion.

IGCI models

These models are based on the hypothesis that if “X causes Y”, then the marginal distri-
bution P (x) and conditional distribution P (y|x) are “independent” in a particular way.
This model gives an information-theoretic view of additive noise models and defines in-
dependence using “orthogonality” in information space. Hence the words “geometric and
information theory ” in the name of the model. The advantage this model provides is
that it can infer causal directions even when the noise is not additive.
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Chapter 4

LiNGAM

The main sources for this chapter are [H+08], [P+17], [Pet08], [Zit13], [Wol18], [Sti11],
[AHO01], [Slo18], [Shi14], [HZSH10], and [SHHK06].

As already pointed out, “Linear Non-Gaussian Additive Models (LiNGAM)” are an
important class of causal models due to the inherent ease of working with these well
understood statistical models. This chapter consists of two sections. The first section
deals with the invertibility of (i.e. existance of causal structures in both directions.)
LiNGAMmodels where we find out the explicit conditions under which the causal model is
identifiable. The second section discusses various methods used to estimate the LiNGAM
model that fits the data.

Definition 4.1. LiNGAM As the name suggests, this model assumes the effect variable
to vary linearly with the cause variable upto an additive non-Gaussian noise term.

Y = αX +N where N ⊥ X

Multivariate LiNGAM is defined as follows:

Y =
n∑
i=1

φiXi +N ; N ⊥ (X1, X2, . . . , Xn)

4.1 Identifiability of LiNGAM
The following is the major theorem of this section that we wish to prove. The theorem
along with its implications is first mentioned to emphasize the significance of this theorem.

Theorem 4.1. Assume that Px,y admits the following linear model for the continuous
random variables X,NY

Y = αX +NY ; NY ⊥ X

Then there exists a model in the opposite direction i.e. there exists β ∈ R and a continuous
random variable NX such that

X = βX +NX ; NX ⊥ Y

if and only if

X,NY (and hence Y,NX) are Gaussian random variables.
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Before proving this theorem, it is good to appreciate how important the above theorem
is. The theorem states that LiNGAM models are identifiable as long as the noise and
X are not Gaussian i.e. as long as we are not following the assumptions associated
with linear regression. Therefore, linear regression’s inability to explain cause and
effect relationships can be explained by the invertibility of the regression model that is
mentioned in the above theorem.

Another important message the theorem conveys is that causal direction can be ren-
dered identifiable if the noise distribution is non-gaussian. This gives a valuable property
for non-gaussian noise which is generally considered undesirable. It is worth pointing
out that, although the proof are given for the bivariate case, the proofs can easily be
extended to multivariate case. A couple of results need to be proved before proving the
main theorem. Definition of the characteristic function is also provided below which will
be used in the process of proving the lemma.

Definition 4.2. The characteristic function of a random variable X is given by

ψX(t) = E[exp (itX)]

It has the property that ψX+Y = ψX · ψY when X ⊥ Y .
If X̃ = (X1, X2, . . . Xn), then the multivariate characteristic function is given by:

ψX̃(t1, t2, . . . , tn) = E

[
exp

(
i

n∑
i=1

tkXk

)]
(4.1)

Here, ψX̃(t1, . . . , tn) =
∏n

i=1 ψXi
(ti) for all (t1, . . . , tn) ∈ Rn.

Lemma 4.1. Suppose that X and N are independent variables such that N is non-
deterministic. Then

N 6⊥ (X +N) (4.2)

Proof. • Case - 1: V ar(X) <∞ and V ar(N) <∞
cov(N,X + N) = cov(N,X) + cov(N,N) = cov(N,N) 6= 0 since N is non-
deterministic. Therefore N 6⊥ (X +N)

• Case - 2: At least one of V ar(X), V ar(N) is not finite. We use proof by contra-
diction. Assume, on the contrary that N ⊥ (X + N) .We first show the following
using the fact that X ⊥ N .

ψN,X(u+ v, v) = ψN,X+N(u, v) = ψN(u+ v) · ψX(v) ∀ (u, v) ∈ R2

Now, the assumption that N ⊥ (X +N) is used to show to show that

ψN,X+N(u, v) = ψN(u) · ψX(v) · ψN(v) ∀ (u, v) ∈ R2

Since ψX(0) 6= 0 and ψX is continuous for any random variable X, we can say that
there exists open interval V = (−r, r) ⊂ R such that |ψX(v)| > 0 ∀ v ∈ V . So for
all v ∈ V , we have

ψN(u+ v) = ψN(u) · ψN(v) (4.3)
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for a given v choose nv ∈ R such that
∣∣∣∣ vnv
∣∣∣∣ ≤ r. Now, using (4.3) repeatedly, we

get

ψN(u+ v) = ψN

(
u+ (n− 1)

v

nv
+

v

nv

)
= ψN

(
u+ (n− 1)

v

nv

)
· ψN

(
v

nv

)
= ψN

(
u+ (n− 2)

v

nv

)
·
[
ψN

(
v

nv

)]2
Repeating the same procedure again and again, we finally get:

ψN(u+ v) = ψN

(
u+ (n− 2)

v

nv

)
·
[
ψN

(
v

nv

)]2
...

= ψN(u) ·
[
ψN(

v

nv
)

]nv

= ψN(u) · ψN(v) (4.4)

Hence, ψN(u + v) = ψN(u) · ψN(v) for all u, v ∈ R. This implies that ψN(u) = zu

for some z ∈ C {c ∈ C|Im(c) = 0;Re(c) < 0} Now, let z = exp (a+ ib). Then we
can deduce that a = 0 since ||ψN ||∞ ≤ 1. It follows that

ψN(u) = exp (ib · u)

Due to uniqueness of characteristic function, we have P (N = 1) = 1. This gives a
contradiction.

Theorem 4.2. [Darmois-Skitovich] Let X1, X2 . . . , Xn be independent, non-degenerate
random variables. The the two linear combinations

l1 = a1X1 + · · ·+ anXn ; ai 6= 0 for all i
l2 = b1X1 + · · ·+ bnXn ; bi 6= 0 for all i

are independent, then each Xi is normally distributed.

The proof of above theorem uses the following theorem:

Theorem 4.3. Let f1, f2, . . . , fn be characteristic functions which satisfy
∏n

i=1 f
αi
i (t) =

f(t) for some αi > 0 and ∀t in a neighbourhood of 0. Here, f is a characteristic function
of the normal distribution.
Then, every fi will also be a characteristic function of the normal distribution.

Proof. We now prove the theorem 4.2 as follows. Without loss of generality, we can
assume ai = 1 for all i. Let ψi be the characteristic function for Xi. Then using (4.4)
proved in the earlier theorem, we get

n∏
i=1

ψi(u+ biv) =
n∏
i=1

ψi(u)
n∏
i=1

ψi(biv) (4.5)
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Claim : none of the ψi vanish on the real line.
We use proof by contradiction. On the contrary, assume that one of the ψi vanishes on
R. So, there is a root u0 of some ψj such that u0 is a root of

∏n
i=1 ψi as well such that u0

is with smallest possible absolute value. So,

∀ v ∈ R
n∏
i=1

ψi(u0 + biv) = 0 (4.6)

now, choose v ∈ R such that |biv| < |
u0
2
| ∀i . Writing u0 =

u0
2

+
u0
2

in (4.6), we get

n∏
i=1

ψi(u0/2)
n∏
i=1

ψi(u0/2 + biv) = 0 (4.7)

ψj(u0) = 0 =⇒ ψj(u0 + bjv) = ψj(u0) · ψj(bjv) = 0 = ψj(u0/2) · ψj(u0/2 + bjv)

Hence
u0
2

or
u0
2

+bjv is a root of
∏n

i=1 ψi which is a contradiction since both have absolute
values less than u0. Hence the claim is true.
Due to the claim we proved, we can apply logarithm on both sides of (4.5). Now, assume
that φi(x) = log (ψi(x)). Application of logarithm gives

n∑
i=1

φi(u+ biv) =
n∑
i=1

φi(u) +
n∑
i=1

φi(biv) := A(u) +B(v) (4.8)

Multiply both sides of (4.8) by (x− u) and integrate over u. This gives∫ x

0

n∑
i=1

φi(u0 + biv)(x− u)du =

[∫ x

0

A(u)(x− u)du

]
+B(v)

x2

2
:= C(x) +B(v)

x2

2

Apply the change of variable t := u+ biv =⇒ dt = du. This gives

n∑
i=0

∫ x+biv

0

φi(t)(x− t+ biv)dt = C(x) +B(v)
x2

2
+B2(v) +B3(v)

Differentiating both sides twice and setting v to 0 gives(we use Leibniz rule here ):

n∑
i=0

φi(x)b2i = B”(0)
x2

2
+B2”(0) +B3”(0) = R(x)

Using the relation between φ and ψ we get the following, where R(x) is a polynomial of
degree 2 over C

n∏
i=1

ψi(x)b
2
i = expR(x)

Using ψi(0) = 1 , ψi(−x) = ¯ψi(v), we can conclude that expR(x) denotes the charac-
teristic function of a normal distribution. Using theorem 4.3 now proves that each Xi is
normally distributed.
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4.1.1 Hilbert Space of Random Variables

Let (Ω,F , P ) be a probability space. A real vector space L2 space of square integrable
random variables (R.Vs) is defined below:

L2(Ω,F , P ) = {X|X is real valued R.V. and E[X2] <∞}

This space is actually a space of equivalence classes of random variables where X, Y are
equivalent if X − E(X) = Y − E(Y ) almost surely. L2 with respect to the operation
(X, Y ) = cov(X, Y ) forms a Hilbert space. Hence we can define the projection of a vector
v ∈ L2 onto a subspace U = span(u1, u2, . . . , uk) (PU(v)) of L2 as follows:

PU(v) =
k∑
i=1

(v, ui)

(ui, ui)
ui (4.9)

The following is the proof of the main theorem mentioned at the beginning of the
chapter. The theorem has been restated for the sake of reader’s convenience.

Theorem 4.4. Assume that Px,y admits the following linear model for the continuous
random variables X,NY

Y = αX +NY ; NY ⊥ X

Then there exists a model in the opposite direction i.e. there exists β ∈ R and a continuous
random variable NX such that

X = βX +NX ; NX ⊥ Y

if and only if

X,NY (and hence Y,NX) are Gaussian random variables.

Proof. • Given: given φ ∈ R such that Y = φX + ε where ε ⊥ X and ε,X are
normally distributed.
To prove: there exists noise ε̃ ⊥ Y such that X = φ̃Y + ε̃
Let PU(X) be the projection of X onto the subspace U = span(Y ) given by

PU(X) =
(X, Y )

(Y, Y )
Y

Then define ε̃ as follows:

ε̃ = X − PU(X) =⇒ X =
(X, Y )

(Y, Y )
Y + ε̃

Above ε̃ is the required noise variable with φ̃ =
(X, Y )

(Y, Y )
since ε̃ ⊥ Y

cov(ε̃, Y ) = cov(X, Y )− (X, Y )

(Y, Y )
cov(Y, Y ) = 0

Hence proved.
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• Given: X,Y are continuous R.Vs such that Y = φX + ε is true such that φ 6= 0 is
in R and ε ⊥ X. Also, this process can be reversed in the sense that there exists
ψ ∈ R such that Y ⊥ ε̃
to prove: X, Y, ε, ε̃ are all Gaussian R.Vs
ε̃ = X − ψY = X − ψ(φX + ε) = (1− ψφ)X − ψε with ε̃ ⊥ Y . The following cases
are possible.

1. 1− ψφ 6= 0 and ψ 6= 0
Taking l1 = Y = φX + ε and l2 = ε̃ = (1− ψφ)X − ψε and applying theorem
4.2 proves the claim in this case.

2. 1− ψφ 6= 0 and ψ = 0
We have Y = φX+ε and ε̃ = (1−φψ)X such that Y ⊥ ε̃. We use the following
property of probability theory now:
If U and V are independent R.Vs, then for all measurable functions f, g, we
have f(U) ⊥ g(U).
Let Y be the variable U and ε̃ be the variable V in the result just stated.
Take f to be the identity map and take g(x) =

x

1− φψ
φ. Notice that g(x)

is well defined. Using this result, and applying the functions f and g, we get
φX + ε ⊥ φX. But this contradicts lemma 4.1. Therefore, this case is not
possible.

3. 1− ψφ = 0 and ψ 6= 0
This case be proved in a way similar to the previous case.

4. 1− ψφ = 0 and ψ = 0
then ε̃ = 0 which is a contradiction since it has to be Gaussian.

Theorem 4.5. Generalized version Let X1, X2 . . . , Xn and Y be random variables for
which Y =

∑n
i=1 φiXi + ε such that ε ⊥ (X1, X2, . . . , Xn) and φi 6= 0. Then we can

reverse the process i.e. there exist ψ ∈ Rfori ∈ {1, 2, . . . , n} and a noise ε̃ such that
X1 =

∑n
i=1 ψiXi + ψY + ε̃

if and only if

X1, X2, . . . , Xn, Y, ε, ε̃ are Gaussian random variables.

Proof. The proof is similar to the proof in the proof for two variable case.

4.2 Estimating the LiNGAM model
The previous section successfully proved that linear causal models with non-gaussian
additive noise are identifiable. Our task now is to estimate the causal model that
describes a given phenomenon. One might wonder about the role of using linear regression
here to estimate the causal model. The answer is that it can be used provided the causal
ordering is known beforehand. Unfortunately, this is not the case in general. Hence, there
are two things that need to be estimated from the observed data alone - one is the causal
order of the variables involved and the other is to estimate the corresponding SEM that
fits the data. Though most of the report focuses on the two variable case, here we state
a few methods or results for the general n variable case.
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4.2.1 Basic setup

The basic setup for identifying causal structures is explained in this subsection. Like
it was previously assumed, causal relations of the observed variables are assumed to
correspond to a DAG i.e. the causal graph does not involve directed cycles or feedback
loops. The noise or exogenous variables are assumed to be independent of one another.
This forces the model not to have any latent or unobserved confounding variables that
causally influence more than one variable. Our primary focus is on continuous variables.
We assume without loss of generality that each variable xi has zero mean.

A causal ordering of the nodes of DAG is an ordering of its nodes in such a way that
no later variable (in terms of ordering) has a directed path to an earlier variable in the
DAG. The causal ordering of the ith variable is denoted by k(i). For example, consider
the simple graph X3 −→ X1 −→ X2. Here we have k(3) = 1; k(1) = 2; k(2) = 3.

To summarize, the following is our linear acyclic SEM with no latent confounders and
mutually independent noise variables.

xi =
∑

k(j)<k(i)

bijxj + ej (4.10)

Here, bij is called the connection strengths from xj to xi. Each ei has zero mean and
non-zero variance such that ei ⊥ ej for all i 6= j. Writing (4.10) in matrix form gives the
following.

x = Bx + e (4.11)

Here, bold font letters in lower case represent vectors while bold font letters in upper
case represent matrices. B is called the connection strength matrix. Observe that
the non-zero entries of B match with that of the transpose of the adjacency matrix A
for the causal graph. The following is an important observation that will be used later.

Lemma 4.2. It is possible to perform simultaneous, equal row and column permutations
on the connection strength matrix B so that it becomes strictly lower triangular.

Proof. Since we assumed our causal graph to be a DAG, we can give its nodes a topological
ordering. Using this topological ordering of nodes, adjacency matrix of a DAG can be
made strictly upper triangular. Hence, the topologically ordered nodes can make B
strictly lower triangular. The reason for equal row and column transformations can be
understood with the help of an example which is given below.

Example 4.1. Consider the following SEM which corresponds to an acyclic DAG:

x1 = 2x3 + e1

x2 = 4x3 + 2x1 + e2

x3 = e3

The 3× 3 connection matrix B which we want to convert to a lower triangular matrix is:
x1 x2 x3

x1 0 0 1
x2 2 0 4
x3 0 0 0

 (4.12)
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The variables x1, x2, x3 are written to keep track of how the vector x changes in x =
Bx + e. The first column keeps track of how the vector x on the LHS changes while the
first row tracks how the elements of x on RHS need to be permuted to keep the equalities
of the SEM intact. Now we apply row and permutations to (4.12) in order to make it
strictly lower triangular.


x1 x2 x3

x1 0 0 1
x2 2 0 4
x3 0 0 0

 −−−−→C3⇔C1


x3 x2 x1

x1 1 0 0
x2 4 0 2
x3 0 0 0

 −−−−→C2⇔C3


x3 x1 x2

x1 1 0 0
x2 4 2 0
x3 0 0 0

 (4.13)

Observe that this makes The matrix B strictly lower triangular but the sequence of x′is
in first column and first row (and hence in (4.11)) is not the same. Hence applying the
same column permutations gives the desired matrix as shown below.

x3 x1 x2
x1 1 0 0
x2 4 2 0
x3 0 0 0

 −−−−→R3⇔R1


x3 x2 x1

x3 0 0 0
x2 4 2 0
x1 1 0 0

 −−−−→R2⇔R3


x3 x1 x2

x3 1 0 0
x1 1 0 0
x2 4 2 0

 (4.14)

Observe that X3, X1, X2 is a causal ordering as well as a topological ordering. 4

Remark 4.1. Now, note that any matrix B can be permuted to become strictly lower
triangular according to the causal ordering k(i). The causal ordering need not always be
unique. I believe that number of causal orders possible depends on the number of source
nodes, since they are the potential points where we can start our causal enumeration.

Objective:

Our objective is to estimate the connection strength matrix B using the observed data
alone. We assume that the data is randomly sampled from a linear acyclic SEM with no
latent confounding variables.

4.2.2 Likelihood of LiNGAM

First approach one would want to consider is the likelihood approach. Therefore, we try
to obtain the expression for the likelihood of the LiNGAM model. We use the following
result from probability to get the likelihood function.

Theorem 4.6. Let x and y be n-dimensional random vectors related by an invertible
linear transformation A i.e. y = Ax. Then the density of y in terms of the density for
x is given by:

fy(y) =
1

| detA|
· fx(A−1y) (4.15)

In order to use this theorem , we need to modify (4.11) in the following way

x = Bx + e =⇒ (I - B)x = e =⇒ x = Ae (4.16)
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where A = (I −B)−1.Also, suppose that A−1 = W Now applying theorem Theorem 4.6
to (4.16), we get the following

fx̃(x̃) =
1

| detA|
· fẽ(Wx)

Denote the ith row of Wx by wTi x. Using this notation, we get

fx̃(x̃) =
1

detA
·
n∏
i=1

fei(w
T
i x)

If the vectors observed are x1, x2, . . . , xt, then the likelihood is given as

L(W ;x1, x2, . . . , xt) =

[
1

detA

t∏
j=1

n∏
i=1

fei(w
T
i xj)

]
− t log (detA)

Observe that A = (I − B)−1 and I − B is a lower triangular matrix with ones on its
diagonal. Since the determinant of a lower triangular matrix is the product of its diagonal

elements, we can say that det(I − B) = 1. Hence detA =
1

det(I −B)
= 1. Therefore,

the likelihood function is:

logL(W ;x1, x2, . . . , xt) =
t∑

j=1

n∑
i=1

fei(w
T
i xj)

Let the jth row of B be given by bj while the vector xi = (xi0, xi1, . . . , xin). Using
wTi xj = xij − bTj xi and using the normalized pdf f̃ei for each ei with variance σ2

i , we get:

logL(W ;x1, x2, . . . , xt) =
t∑

j=1

n∑
i=1

f̃ei

(
xij − bTj xi

σj

)
+ t

n∑
j=1

log(σj) (4.17)

Once we have obtained the log likelihood of the LiNGAM model as in (4.17), our next
step should be to estimate the connection strength matrix B which maximizes the log
likelihood function over all possible causal orderings. This approach has the following
two problems due to which it is generally avoided:

• The number of possible causal orderings for nodes (which need to be identified here)
increase quickly when large number of variables are involved. Hence, this procedure
will be computationally costly.

• In order to apply the method we proposed, we need to estimate the densities f̃ei for
all 1 ≤ i ≤ n. These estimates are again used to estimate the likelihood function.
This means that we use the data twice, which is not desirable.

Methods discussed later in the section explain in brief the methods proposed by Shimizu
et. al. to estimate B that do not require the investigation of all possible causal orderings
or the estimation of densities. Before stating this method, it is important to have a basic
understanding of “independent component analysis”.
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4.2.3 Independent component analysis (ICA)

The problems that ICA deals with can be better understood with the help of a motivating
example which has been given below. This example serves as a motivation for us to
mathematically define the problem we wish to address. Then, we try to identify the
conditions under which this model can be estimated.

Motivation

Assume that there are three people locked up in a room. The three people talk simulta-
neously and all the voices/sound signals in the room are being recorded by three micro-
phones kept at three different places. The voice recorded in each microphone will depend
on its distance from each of the three person present in the room. Hence, each micro-
phone records a unique superimposition of the three sound signals. Let these (observed)
recordings/signals be given by x1(t), x2(t), x3(t). Now assuming that the signals being
emitted by the three people (three independent sources) is given by s1(t), s2(t), s3(t), we
can conclude the following:

x1(t) = a11s1(t) + a12s2(t) + a13s3(t)

x2(t) = a21s1(t) + a22s2(t) + a23s3(t)

x3(t) = a31s1(t) + a32s2(t) + a33s3(t)

Here, we wish to retrieve the original speech signals s1(t), s2(t), s3(t) using the observed
signals x1(t), x2(t), x3(t). Note that the parameters a′ijs as well as the source signals si(t)
are unknown to us. Hence, the aim of the section is to estimate si(t) for 1 ≤ i ≤ 3 and
ai,j for all i, j using the observed signals (xi(t)) alone.

4.2.4 ICA model

As observed earlier, ICA is used to estimate the parameters aij and the independent
components si(t) using the information we have from the observed signals xi(t). We
rigorously define ICA in the following manner

xi = ai1s1 + ai2s2 + · · ·+ ainsn for all i ∈ {1, 2, . . . , n} (4.18)

Notice that the source variables and observed variables in the above definition do not
involve the time variable. Instead each si and xi is simply a random variable such that all
si are mutually statistically independent variables. The independent components(IC)
si are called latent variables because they cannot be directly observed. All we observe
here are the random variables xi, and we must estimate the mixing coefficients aij and
the ICs si using the xi. (4.18) is called the basic ICA model. This model is said to be a
generative model, which means that it describes how the observed data are generated
by a process of mixing the component sj. The matrix version of the ICA model is given
below:

x = As =
n∑
i=1

aisi (4.19)

In (4.19), A is an n× n matrix consisting of all parameters aij while x= (x1, x2 . . . , xn)
and s = (s1, s2 . . . , sn) denote the vectors consisting of observed and latent variables
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respectively. Another definition of the ICA model using column vectors ai of A is also
given in (4.18).

Restrictions we assume for the ICA model

1. The independent components are assumed to be statistically independent.

2. The independent components must have a non-gaussian distribution. It is impor-
tant to note that in the basic model, we do not assume that we know the form of
the non gaussian distributions that the independent components follow. Instead we
only assume that the distribution is not gaussian.

3. We assume for the sake of simplicity that the unknown mixing matrix is an invertible
square matrix.

Under the above mentioned assumptions, ICA model is identifiable i.e. the mixing
matrix and the independent components can be estimated upto some indeterminacies.
These indeterminacies in the final solution have been explained below.

Ambiguities of ICA

ICA is capable of estimating the matrix A but it has the limitation of being able to
estimate it only upto a permutation, scaling and sign indeterminacy. These ambiguities
have been elaborated below:

1. We cannot determine the variances of the independent components because x can

be written as x =
∑

i(
1

αi
ai)(siαi) which means that the estimate we obtain for A is

correct upto left multiplication by a diagonal matrix. This is because each column
of A is being multiplied by a different scalar. Observe that this also explains the
sign indeterminacy of ICA.

2. We cannot determine the order of the independent components. Since both s and
A are unknown, the order of the terms in (4.19) can be changed the way we want
i.e. we can call any one of the ICs as the first IC. In other words, we can estimate
A only upto multiplication by a permutation matrix P to the left (which permutes
the rows).

Suppose that A is the true solution for the ICA model we are given to solve. Then the
estimate we obtain (AICA) will be related to A as follows:

AICA = PDA (4.20)

where P is a permutation matrix while D is a diagonal matrix. There a number of
different approaches to estimate the independent components. These methods are not
discussed here.
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4.2.5 ICA-LiNGAM algorithm

ICA-LiNGAM algorithm is an estimation algorithm that utilizes independent component
analysis in order to estimate the connection strength matrix B. We now convert the
problem of LiNGAM identification into a problem of ICA estimation as follows:

x = Bx + e =⇒ x = Ae where A = (I-B)−1 (4.21)

Here, x denotes the vector of observed values while e denotes the vector of non-Gaussian
noise variables. Hence the problem of estimating A has now become the problem of ICA
model estimation.

Instead of assuming that the observed and source/error variables to be random vari-
ables, consider the case where the observed and error/source variables are random vectors
x1,x2 . . .xn and e1, e2 . . . em respectively. The problem of LiNGAM identification now
becomes

X = AE where Xm×n = [x1, . . . ,xn] and Em×n = [e1, . . . , em]T (4.22)

Note that A is called the mixing matrix whose inverse is denoted by W. The following
are the steps of ICA-LiNGAM algorithm

1. Given an m× n data matrix X, where each column contains one sample vector x,
first subtract the mean from each row of X, then apply an ICA algorithm to obtain
a decomposition X = AE where E has the same size as X and contains in its rows
the independent components. From here on, we will exclusively work with W =
A−1.

2. Find the one and only permutation of rows of W which yields a matrix West

without any zeros on the main diagonal. In practice, small estimation errors will
cause all elements of W to be non-zero, and hence the permutation is sought which
minimizes

∑
i(1/|W

est
ii |).

3. Divide each row of West by its corresponding diagonal element, to yield a new
matrix W∗ with all ones on the diagonal.

4. Compute an estimate B∗ of B using B∗ = I−W∗.

5. Finally, to find a causal order, find the permutation matrix P (applied equally to
both rows and columns) of B∗ which yields a matrix B# = PB∗ PT which is as
close as possible to strictly lower triangular. This can be measured for instance
using

∑
i≤j[B

#
ij ]

2

First step involves the use of ICA to obtain an estimate for A. Any standard ICA
algorithm found in literature can be applied here. This gives us the estimate A which
as pointed out earlier has permutation,scaling and sign indeterminacies which have to be
resolved.

The second step uses the property of a DAG. The estimated matrix W has rows
arranged in a random order. Hence the observed vectors are not necessarily in correspon-
dence with the error vectors (We are not trying to give the nodes a causal ordering, we
only wish to have the right correspondence). This issue is resolved by using the fact that
there exists a unique permutation of rows of W that would give a matrix with no zeroes
on the diagonal. This is because W = I−B, where there is a permutation of rows of B

32



that can make the matrix B strictly lower triangular. This happens because we assumed
the graph to be a DAG. Hence W turns into be a lower triangular matrix with 1 as its
diagonal entries. The uniqueness of the permutation however needs a proof which is not
mentioned here.

The result mentioned above would occur in real life provided we were able to estimate
West exactly. However, this is not the case in general. Since every permutation of the rows
of W, except for one , contains at least one zero, finding the matrix which minimizes∑

i(1/|W
est
ii |) would give us the matrix with non-zero diagonal entries. As mentioned

earlier, this is the matrix with the right correspondence between source and observed
vectors.Again, this need not necessarily be the causal ordering.

The third step is to divide the elements of each row with its corresponding diagonal
element because we know that the true value of W is I - B. This is due to the fact
that all the diagonal entries for B are zero when the matrix B is made strictly lower
triangular due to its causal ordering. Hence the true estimate for W must contain all 1s
on its diagonal. This solves the scaling indeterminacy associated with ICA estimation.

The final step intends to solve the permutation indeterminacy. The indeterminacy is
solved by identifying the causal ordering. If B∗ is an exact estimate of B, then the causal
ordering can be obtained by permuting the rows and columns of B∗ such that it becomes
strictly lower triangular. However, the estimate we obtain is almost never exact. Hence
the causal order is identified by permuting the rows and columns of B∗ until it minimizes
the sum of upper triangular elements.

Remark 4.2. 1. In the case of second step, we have to identify the unique permuta-
tion of rows that minimizes

∑
i(1/|W

est
ii |). This can be done by by performing an

exhaustive search as long as the dimension of the data is low. High dimensional
data require specialized methods to identify the required row permutations.

2. This method exhibits the drawback that ICA algorithms may not converge to a
correct solution in a finite number of steps if the initially guessed state is badly
chosen.

4.3 Data Analysis
We will again use the Old Faithful Geyser data that we came across in the last chapter.
This time, we use the LiNGAM model to determine the underlying causal structure.
A plot of the data after fitting the least squares regression line is provided. It can be
observed that the data is clustered in two different regions which indicates that the noise
is likely to be bi-modal. We calculate the coefficient of determination which gives us
enough evidence to believe that the variables involved have a linear relationship.

> attach(faithful)
> h = lm(waiting~eruptions)
> summary(h)$r.squared
[1] 0.8114608

Now, we give enough evidence to claim that the noise is infact a mixture distribution
made up of two gaussian distributions. Observe that the first cluster is found for the
values of the x-variable (eruptions) less than 3, while the other one is found for x-values
greater than 3. Hence we subset the data as follows:
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Figure 4.1: Clustered old faithful geyser data

> erup = faithful[,1]
> a = h$residuals[erup<3]
> length(h$residuals[erup<3])
[1] 97
> ks.test(h$residuals[erup<3], rnorm(97,mean(a), sd(a)))
Two-sample Kolmogorov-Smirnov test

data: h$residuals[erup < 3] and rnorm(97, mean(a), sd(a))
D = 0.10309, p-value = 0.6812
alternative hypothesis: two-sided

From a p-value of 0.6812, we can conclude that we do not have enough evidence to reject
the null hypothesis (the noise is normally distributed) at a significance level of 5% . We
apply the same procedure for the second cluster.

> b = h$residuals[erup > 3]
> length(h$residuals[erup>3])
[1] 175
> ks.test(h$residuals[erup>3], rnorm(175,mean(b), sd(b)))
Two-sample Kolmogorov-Smirnov test

data: h$residuals[erup > 3] and rnorm(175, mean(b), sd(b))
D = 0.085714, p-value = 0.5412
alternative hypothesis: two-sided

Here also, we do not have enough evidence to reject the null hypothesis. Hence the model
has an inherent linearity along with a noise that follows a mixed distribution made out of
two gaussian distributions. Hence this is an ideal situation to apply the LiNGAM model
in order to identify the causal direction.

getParents(faithful,method = "LINGAM")
eruptions waiting

eruptions 0 1
waiting 0 0
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We again get the same result as we obtained earlier in the previous chapter. Yet again
we conclude that eruption time of a given geyser determines the amount of time it takes
for the next geyser to erupt. Therefore the causal structure is :

eruption −→ waiting
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