Persistent Homology Computation

Padma Ragaleena Tanikella

GTDAML 2023

Introduction and initial set up

- In Topological data analysis, one works with **point-cloud data set** (X, d) i.e. the data set X modeled as a **finite metric space**.
- ullet We assume X to be a discrete sample from a larger topological space S whose shape we are interested in.

Aim: Utilize X in-order to obtain "shape" information about S.

- $|X| < \infty \implies X$ is equipped with the <u>discrete topology</u> which is neither topologically useful nor interesting.
- To overcome this problem, we store shape information in X using an algebraic object called simplicial complex which enables us to use tools from Algebraic Topology to extract topological information.

Why use a simplicial complex?

- We assume the underlying topological space S is **triangulable**, hence it makes sense to associate it with a simplicial complex that allows us to use the area of **simplicial homology** within Algebraic topology to extract topological information.
- Although the fundamental group of a space contains all the topological information, computing the fundamental group of spaces is often very difficult.
- Therefore at the cost of losing topological information, one prefers **simplicial homology groups**, as they are easier to compute under triangulization assumption.

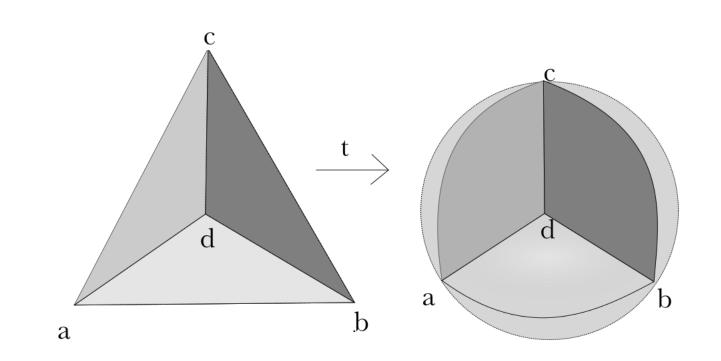


Figure 1. 2-D sphere is triangulable.

Associating data with a Simplicial Complex

• Our goal is to build a simplicial complex on data set X such that the homology of the complex approximates the homology of the original space S.

Complex	Size	Guarantee
Čech	$\mathcal{O}(2^n)$	Nerve Theorem
Vietoris-Rips	$\mathcal{O}(2^n)$	Approximates Čech
Alpha		Nerve Theorem
Witness		In Euclidean space

Table 1. Some ways of associating a simplicial complex to data

• The worst case size of Čech and Rips complex is exponential. However, the process of constructing the complex takes exponential for Čech and polynomial time, $\mathcal{O}(n^3)$, for Rips.

Persistent Homology Basics

X = Simplicial complex.

- The k-th chain group $C_k(X;R)$ is a **free abelian group** if the set of coefficients R come from a \mathbb{Z} . This in turn induces a series of **group homomorphisms** $\partial_k: C_k(X;R) \to C_{k-1}(X;R)$.
- On the other hand, if the coefficients R come from a **field** then $C_k(X;R)$ is a **vector space** over R which induce a series of **linear transformations** $\partial_k: C_k(X;R) \to C_{k-1}(X;R)$.
- Define $Z_k(X;R) = \ker(\partial_k)$ and $B_k(X;R) = \operatorname{Im}(\partial_{k+1})$.
- k-th homology group = $H_k(X;R) = \frac{Z_k(X;R)}{C_k(X;R)}$

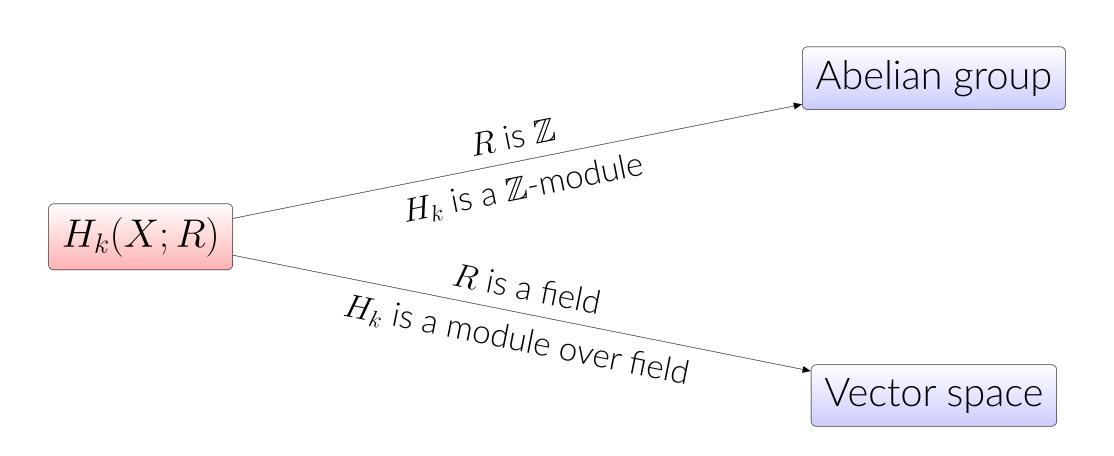


Figure 2. The choice of coefficient PID (eg. \mathbb{Z} , field) influences the structure of $H_k(X;R)$. Note that free abelian groups have properties similar to vector spaces.

Reduction algorithm to compute $H_k(X;R)$

- The algorithm is originally due to Poincaré. Although Poincaré was unaware, the algorithm is equivalent to Smith's algorithm published earlier.
- Let $R = \mathbb{Z}$ for simplicity.
- The Smith normal form of a $r \times c$ matrix M over $\mathbb Z$ is a matrix product

$$\mathbf{S_{r imes r}} \ \mathbf{ ilde{N}} \ \mathbf{T_{c imes c}} = \mathbf{M_{r imes c}} \ ext{where} \ \mathbf{ ilde{M}} = \begin{bmatrix} \mathrm{Diag}(d_1, \cdots, d_m) & 0_{m imes (c-m)} \\ 0_{(r-m) imes m} & 0_{(r-m) imes (c-m)} \end{bmatrix}$$

such that matrices \mathbf{S}, \mathbf{T} are invertible and $d_i | d_{i+1}$ for all i.

• Reduction algorithm computes $H_k(X;R), B_k(X;R)$ and $Z_k(X;R)$ by reducing boundary matrix to Smith Normal form. Let

$$\partial_k = S_k \tilde{\partial}_k T_k \ \forall k \ \mathrm{such \ that \ rank} (\partial_k) = m_k, \ \mathrm{then},$$
 $H_k(X;\mathbb{Z}) \cong \mathbb{Z}^{n_k - m_k - m_{k+1}} \oplus \bigoplus_{i=1}^{m_{k+1}} (\mathbb{Z}/d_{ki}\mathbb{Z})$

Structure theorem for modules over PID

Theorem: Let $M \neq \emptyset$ be a finitely generated module over a PID R.

1. Then
$$\frac{M}{\mathrm{Tor}(M)}$$
 is free and there exists a free submodule F in M such that

$$M \cong \operatorname{Tor}(M) \oplus F$$
 where $F \cong \frac{M}{\operatorname{Tor}(M)}$

2. For $r \in \mathbb{N} \cup \{0\}$ and $a_1, \dots, a_m \in R$ (which are not units in R) satisfying $a_1|a_2|\cdots|a_m$, we have

$$M \cong R^r \oplus \frac{R}{\langle a_1 \rangle} \oplus \cdots \frac{R}{\langle a_m \rangle}$$

The <u>structure theorem</u> completely characterizes the structure of finitely generated modules over PID.

Barcodes: Alternate way of storing homology information

- <u>Idea:</u> Combine the homology of all complexes in the filteration and view it as a single algebraic structure called the <u>Persistence Module</u>.
- Let $\{X_i\}_{i=1}^n$ be a filtered simplicial complex. Then $\mathcal{M} = \{(H_k(X_i))_{i=1}^n, (f_{ij})_{\forall i,j}\}$ defines a persistence module.
- Given a persistence module $\mathcal{M}_1 = \{M_i, \phi_i\}_{i \geq 0}$ where each M_i is an R-module, there exists corresponding well-defined R[t]-module $\alpha(\mathcal{M}_1) = \bigoplus_{i \geq 0} M_i$

$Ring\ R$	R[t]	Can we characterize $\alpha(\mathcal{M}_1)$?
PID, E.g. Z	Not a PID	Known to be a difficult classification problem
Field, E.g. $\mathbb{Z}/p\mathbb{Z}$	PID	Use the Structure theorem

Table 2. Significance of using field coefficients

- Define \mathcal{P} -interval to be an ordered pair (i,j) such that $0 \le i < j \in \mathbb{Z} \cup \{\infty\}$.
- Let R = F be a field. Now, associate an F[t]-module to a finite set of \mathcal{P} -intervals using the map \mathcal{Q} :
- $Q(i,j) = \sum_{i} \frac{F[t]}{(t^{j-i})}$ (Torsion part)
- $\mathcal{Q}(i,\infty) = \sum_{i} F[t]$ (Free part)
- Let ${\mathcal S}$ be set of ${\mathcal P}$ -intervals, then ${\mathcal Q}({\mathcal S}) = \bigoplus_{(i,j) \in {\mathcal S}} {\mathcal Q}(i,j)$
- Corollary: The correspondence $\mathcal{S} \longrightarrow \mathcal{Q}(\mathcal{S})$ defines a bijection between finite sets of \mathcal{P} -intervals and finitely generated graded modules over F[t].

Persistance modules		Finitely generated non-negative	Finite sets of
of finite type over F	•	graded modules over $F[t]$	${\mathcal P}$ -intervals

The Standard algorithm for $R=\mathbb{Z}/2\mathbb{Z}$

- The algorithm gives a way of obtaining **barcodes**, i.e. a set of \mathcal{P} intervals for a filtered simplicial complex over field F without having to construct the persistence module.
- Place a <u>total order</u> on $X = {\sigma_1, \dots, \sigma_n}$.
- Define: $\delta(i,j) = \mathbb{I}(\sigma_i \le \sigma_j \text{ of codim } 1)$ and $\text{low}(j) = i := \text{argmax}\{x | \delta(x,j) \ne 0\}.$
- We say that δ is <u>reduced</u> if low is injective. Note that low(j) is undefined when $\delta(x,j)=0 \ \forall \ x\in\{1,\cdots,n\}.$

Once low is reduced, following is how we get barcodes:

- 1. If $low(j) = i \implies pair \sigma_j$ with σ_i which corresponds to $[dg(\sigma_i), dg(\sigma_j))$
- 2. If low(j) = undefined, then it corresponds to $[dg(\sigma_j), \infty)$

References

- [1] Jeff Ericson. Lecture notes in Computational Topology (CS598: UIUC), Fall 2009.
- [2] Nina Otter, Mason A Porter, Ulrike Tillmann, Peter Grindrod, and Heather A Harrington. A roadmap for the computation of persistent homology. *EPJ Data Science*, 6(1), August 2017.
- [3] Afra Zomorodian and Gunnar Carlsson.
 Computing persistent homology.

 Discrete & Computational Geometry, 33(2):249–274, November 2004.