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Introduction and initial set up

In Topological data analysis, one works with point-cloud data set (X, d) i.e. the
data set X modeled as a finite metric space.

We assume X to be a discrete sample from a larger topological space S whose

shape we are interested in.

Aim: Utilize X in-order to obtain “shape” information about S.

|X| < ∞ =⇒ X is equipped with the discrete topology which is neither

topologically useful nor interesting.

To overcome this problem, we store shape information in X using an algebraic

object called simplicial complex which enables us to use tools from Algebraic

Topology to extract topological information.

Why use a simplicial complex?

We assume the underlying topological space S is triangulable , hence it makes

sense to associate it with a simplicial complex that allows us to use the area of

simplicial homology within Algebraic topology to extract topological

information.

Although the fundamental group of a space contains all the topological

information, computing the fundamental group of spaces is often very difficult.

Therefore at the cost of losing topological information, one prefers simplicial

homology groups, as they are easier to compute under triangulization

assumption.

Figure 1. 2-D sphere is triangulable.

Associating data with a Simplicial Complex

Our goal is to build a simplicial complex on data set X such that the

homology of the complex approximates the homology of the original space S.

Complex Size Guarantee

Čech O(2n) Nerve Theorem

Vietoris-Rips O(2n) Approximates Čech

Alpha Nerve Theorem

Witness In Euclidean space

Table 1. Some ways of associating a simplicial complex to data

The worst case size of Čech and Rips complex is exponential. However, the

process of constructing the complex takes exponential for Čech and

polynomial time, O(n3), for Rips.

Persistent Homology Basics

X = Simplicial complex.

The k-th chain group Ck(X ; R) is a free abelian group if the set of coefficients

R come from a Z. This in turn induces a series of group homomorphisms

∂k : Ck(X ; R) → Ck−1(X ; R).
On the other hand, if the coefficients R come from a field then Ck(X ; R) is a
vector space over R which induce a series of linear transformations

∂k : Ck(X ; R) → Ck−1(X ; R).
Define Zk(X ; R) = ker(∂k) and Bk(X ; R) = Im(∂k+1).

k-th homology group = Hk(X ; R) = Zk(X ; R)
Ck(X ; R)

Hk(X ; R)

Vector space

R is a fieldHk is a module over field

Abelian group

R is Z

Hk is
a Z-mod

ule

Figure 2. The choice of coefficient PID (eg. Z, field) influences the structure of Hk(X ; R). Note
that free abelian groups have properties similar to vector spaces.

Reduction algorithm to compute Hk(X ; R)

The algorithm is originally due to Poincaré. Although Poincaré was unaware,

the algorithm is equivalent to Smith’s algorithm published earlier.

Let R = Z for simplicity.

The Smith normal form of a r × c matrix M over Z is a matrix product

Sr×r M̃ Tc×c = Mr×c where M̃ =
[
Diag(d1, · · · , dm) 0m×(c−m)

0(r−m)×m 0(r−m)×(c−m)

]
such that matrices S, T are invertible and di|di+1 for all i.

Reduction algorithm computes Hk(X ; R), Bk(X ; R) and , Zk(X ; R) by reducing

boundary matrix to Smith Normal form. Let

∂k = Sk∂̃kTk ∀k such that rank(∂k) = mk, then,

Hk(X ;Z) ∼= Znk−mk−mk+1 ⊕
mk+1⊕
i=1

(Z/dkiZ)

Structure theorem for modules over PID

Theorem: Let M 6= ∅ be a finitely generated module over a PID R.

1. Then
M

Tor(M)
is free and there exists a free submodule F in M such that

M ∼= Tor(M) ⊕ F where F ∼=
M

Tor(M)
2. For r ∈ N ∪ {0} and a1, . . . , am ∈ R (which are not units in R) satisfying

a1|a2| · · · |am, we have

M ∼= Rr ⊕ R

〈a1〉
⊕ · · · R

〈am〉
The structure theorem completely characterizes the structure of finitely gener-

ated modules over PID.

Barcodes: Alternate way of storing homology information

Idea: Combine the homology of all complexes in the filteration and view it as a

single algebraic structure called the Persistence Module.

Let {Xi}n
i=1 be a filtered simplicial complex. Then M = {(Hk(Xi))n

i=1, (fij)∀i,j}
defines a persistence module.

Given a persistence module M1 = {Mi, φi}i≥0 where each Mi is an R-module,

there exists corresponding well-defined R[t]-module α(M1) =
⊕
i≥0

Mi

Ring R R[t] Can we characterize α(M1)?

PID, E.g. Z Not a PID Known to be a difficult classification problem

Field, E.g. Z/pZ PID Use the Structure theorem

Table 2. Significance of using field coefficients

Define P-interval to be an ordered pair (i, j) such that 0 ≤ i < j ∈ Z ∪ {∞}.
Let R = F be a field. Now, associate an F [t]-module to a finite set of

P−intervals using the map Q:

Q(i, j) =
∑

i

F [t]
(tj−i)

(Torsion part)

Q(i, ∞) =
∑

i F [t] (Free part)
Let S be set of P-intervals, then Q(S) =

⊕
(i,j)∈S

Q(i, j)

Corollary: The correspondence S −→ Q(S) defines a bijection between finite

sets of P-intervals and finitely generated graded modules over F [t].

Persistance modules

of finite type over F
Finitely generated non-negative

graded modules over F [t]
Finite sets of

P-intervals

The Standard algorithm for R = Z/2Z

The algorithm gives a way of obtaining barcodes, i.e. a set of P intervals for a

filtered simplicial complex over field F without having to construct the

persistence module.

Place a total order on X = {σ1, · · · , σn}.
Define: δ(i, j) = I(σi ≤ σj of codim 1 ) and low(j) = i := argmax{x|δ(x, j) 6= 0}.
We say that δ is reduced if low is injective. Note that low(j) is undefined when

δ(x, j) = 0 ∀ x ∈ {1, · · · , n}.

Once low is reduced, following is how we get barcodes:

1. If low(j) = i =⇒ pair σj with σi which corresponds to [dg(σi), dg(σj))
2. If low(j) = undefined, then it corresponds to [dg(σj), ∞)

References

[1] Jeff Ericson.

Lecture notes in Computational Topology (CS598: UIUC), Fall 2009.

[2] Nina Otter, Mason A Porter, Ulrike Tillmann, Peter Grindrod, and Heather A Harrington.

A roadmap for the computation of persistent homology.

EPJ Data Science, 6(1), August 2017.

[3] Afra Zomorodian and Gunnar Carlsson.

Computing persistent homology.

Discrete & Computational Geometry, 33(2):249–274, November 2004.

Pennsylvania State University, University Park pbt5137@psu.edu Department of Statistics, Eberly College of Science

mailto:pbt5137@psu.edu

