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Abstract

As the title suggests, the thesis covers selected topics from multivariate statistical analysis.
The primary reference used while learning different topics was “Modern Multivariate
Statistical Techniques” by Alan J. Izenman.

The first two chapters focus on introductory topics. Multivariate gaussian distribution
and the properties associated with the distribution have been mentioned in detail. The
third chapter deals with “Principal component analysis” which is a dimension reduction
technique where we attempt to a new set of variables which are not only uncorrelated
with each other, but also much fewer in number than the original set of variables that we
start with. Construction of these new variables is such that these new variables capture
most of the variation information present in the data.

Lastly, the three remaining chapters deal with different kinds of classification tech-
niques. Statistical classification techniques attempt to predict the true class label of a
new observation (i.e. an observation not used in the construction of the classifier) based
on a set of observations whose class labels are known beforehand. The thesis discusses
the following classification methods - linear discriminant analysis, quadratic discriminant
analysis, Fisher discriminant analysis, decision tree classifier, and artificial neural net-
work classifier. Underlying assumptions of each of these techniques along with how each
of these methods work has been discussed.
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Chapter 1

Multivariate Gaussian distribution

The content of this chapter has been taken from [Ize08], [And03], [SL03], [RTSH08,
Appendix A.12. A.13], [Ana07], [Lee14], [Mas11] and [Bar06]. The figures in the chapter
have been taken from [Lee14]

The normal distribution, commonly known as the bell curve, plays a crucial role in
the field of statistics. Therefore, it is worth noting that the univariate normal density
was first discovered by De Moivre in the year 1733 while attempting to approximate the
binomial sum. Interestingly, this is nothing but the “normal approximation to binomial"
that most of us learn during our introductory course in statistics. Later, in the year
1783, Laplace used normal density curve to describe the distribution of errors which was
subsequently used by Gauss to analyze astronomical data in 1809.

The fundamental properties of the multivariate normal distribution are discussed in
the current chapter.

1.1 Multivariate normal density
Definition 1.1. The pˆ 1 random vector X̃ is said follow a (non-singular) multivariate
normal distribution if its density function is as follows:

fX̃px̃q “
1

p2πq
p
2 |Σ|

1
2

exp

„

´1

2
px̃´ µ̃qT |Σ|´1

px̃´ µ̃q



(1.1)

where µ̃ is a pˆ 1 vector while Σ is a pˆ p symmetric positive definite matrix.

Observe that the univariate normal distribution can be written as

1

σ
?

2π
exp

!

´px´ µq2

2σ2

)

“
1

σ
?

2π
exp

!

´1

2
px´ µq

1

σ2
px´ µq

)

It is clear that we obtain the univariate normal distribution when we replace the p ˆ p
symmetric positive definite matrix Σ´1 by the 1 ˆ 1 symmetric positive definite matrix
1
σ2 .

Remark 1.1. 1. Observe that Σ´1 is also a symmetric positive definite matrix as
the inverse of a symmetric positive definite matrix is also symmetric and positive
definite.
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2. Observe that Σ has to be an invertible matrix for the multivariate normal distribu-
tion to be well defined. However, if Σ is non-invertible, one can define a singular
normal distribution. The density in this case will involve the generalized inverse
of Σ in place of the inverse mentioned in (1.1).

3. The assumption that Σ is positive definite ensures that the multivariate density is
a bounded function on Rp. This ensures that the integral of the normal density is
finite.

In the reminder of the section, I will verify the fact that the normal density is indeed
a mathematically well-defined density function.

The exponential part of the multivariate normal density function in (1.1) ensures that
the density is positive for all x̃ P Rb. Now, we show that the integral of the density
function over Rp integrates to one.

Let K˚
“

ż `8

´8

¨ ¨ ¨

ż `8

´8

exp
!

´1

2
px̃´ µ̃qTApx̃´ µ̃q

)

dxpdxp´1 ¨ ¨ ¨ dx1 where A “ Σ´1

(1.2)

Using the spectral decomposition theorem for the symmetric matrix A, we can claim that
there exists an orthogonal matrix P such that A “ PDPT where D is the diagonal matrix
containing the eigen values of A. Now, write D as D “ D

1
2 D

1
2 . Taking C “ PD

´1
2 , we

can show that, for every A, there exists an invertible matrix C such that CTAC “ I.
Since C is invertible, the following transformation on x̃ can be defined.

ỹ “ C´1
px̃´ µ̃q (1.3)

Using the transformation (1.3) in (1.2) and then applying the change of variable formula
gives the following integral:

K˚
“ |detC| ˆ

ż `8

´8

¨ ¨ ¨

ż `8

´8

exp
!

´ỹT ỹ

2

)

dxpdxp´1 ¨ ¨ ¨ dx1 (1.4)

where |detC| is the modulus of the Jacobian of the transformation (1.3). Since ỹT ỹ “
řp
i“1 y

2
i and the univariate normal density integrates to 1, the equation (1.4) can be

written as

K˚
“ |detC| ˆ

p
ź

i“1

!

ż `8

´8

exp
!

´y2
i

2

))

“ |detC| ˆ
p
ź

i“1

p
?

2πq “ |detC|p
?

2πqp

Finaly, using CTAC “ I we can show that |detC| “ 1{
?

detA.

K˚
“ p
?

detAq´1
ˆ p
?

2πqp “ p
?

detΣq ˆ p
?

2πqp (1.5)

Therefore, (1.5) proves that the density in (1.1) integrates to one. This proves that the
multivariate normal density is a well defined density function.
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1.2 Expectation and Variance
Definition 1.2. An m ˆ n matrix M “ pMijq with random variables Mij as its entries
is called a random matrix.

Definition 1.3. If M “ pMijq is an m ˆ n random matrix, then the expected value of
the matrix is defined as

ErMs “ pErMijsq for all pi, jq P t1, 2, ¨ ¨ ¨mu ˆ t1, 2, ¨ ¨ ¨ , nu

Since a vector is a special kind of a matrix, this definition can be used to define the
expectation of a random vector X̃ as well. ErX̃s is usually denoted by µ̃ in this report.

Definition 1.4. The variance or covariance matrix of a p ˆ 1 random vector is defined
as the expectation of the pˆ p matrix pX̃ ´ µ̃qpX̃ ´ µ̃qT where µ̃ “ ErX̃s.

VrX̃s “ ErpX̃ ´ µ̃qpX̃ ´ µ̃qT s “ ErX̃X̃T
s ´ µ̃µ̃T

Lemma 1.1. If Z is an mˆ n random matrix, D is an lˆm real matrix, E is an nˆ q
real matrix, and F is an l ˆ q real matrix, then

ErDZE` Fs “ DpErZsqE` F (1.6)

Proof. Let Z “ pzijq, D “ pdijq, E “ peijq, and F “ pfijq where M “ pmijq for a
p ˆ q matrix M implies that that the matrix M consists of the elements mij for all
pi.jq P t1, 2, ¨ ¨ ¨ , pu ˆ t1, 2, ¨ ¨ ¨ , qu. Using this notation, we can show that that general
pi, jqth element on both the sides of (1.6) is equal. This proves that the lemma is true.

Lemma 1.2. Let Ỹ be an pˆ1 random vector, such that it follows the following equation
for a random vector X̃ of size k ˆ 1:

Ỹ “ DX̃ ` F̃ (1.7)

Note that the matrices D and F are non-random matrices of appropriate sizes. Then

VrỸ s “ DVrX̃sDT (1.8)

Proof.

VrỸ s “ ErDpX̃ ´ µ̃qpX̃ ´ µ̃qTDT
s “ DErpX̃ ´ µ̃qpX̃ ´ µ̃qT sDT

The first equality is obtained by using the definition of the variance of a random vector.
The second equality follows from the Lemma 1.1.

Let X̃ be a multivariate normal random vector. As mentioned earlier, its density will
be given as follows:

fX̃px̃q “
1

p2πq
p
2 |Σ|

1
2

exp

„

´1

2
px̃´ µ̃qT |Σ|´1

px̃´ µ̃q



(1.9)

Now consider the transformation (1.3) that we used earlier. Then density gỸ of pY1, Y2, ¨ ¨ ¨ , Ypq
is given by

gỸ py1, y2, ¨ ¨ ¨ , ypq “ fX̃px1pỹq, ¨ ¨ ¨ , xppỹqq ˆ |J | (1.10)
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where |J | is the modulus of the Jacobian of the transformation (1.3). Using (1.10), we
can show that the density of pY1, Y2, ¨ ¨ ¨ , Ypq is

gỸ pỹq “
1

p2πq
p
2

exp
!

´ỹT ỹ

2

)

“
1

p2πq
p
2

p
ź

i“1

exp
!

´y2
i

2

)

It is easy to see from the calculations below that the expected value of Yi, for any
i P t1, 2, ¨ ¨ ¨ , pu, is 0 since the integral of yi exp

!

´y2i
2

)

, an odd function, over R is 0.

ErYis “
1

p2πq
p
2

ż `8

´8

¨ ¨ ¨

ż `8

´8

yi exp
!

p
ź

i“1

exp
!

´y2
i

2

))

dxpdxp´1 ¨ ¨ ¨ dx1 “ 0 (1.11)

Equation (1.11), implies that ErỸ s “ 0̃. Now, applying Lemma 1.7 to the transformation
(1.3), we can show that ErX̃s “ µ̃. Similarly, we can compute the variance of the vector
X̃ by first finding the variance of Ỹ and then using Lemma 1.7.

From the definition of covariance matrix,

VrỸ s “ ErỸ Ỹ T
s “ pErYiYjsq pi, jq P t1, 2, ¨ ¨ ¨ , pu ˆ t1, 2, ¨ ¨ ¨ , pu

So finding the variance of X̃ is equivalent to calculating the expectation of ErYiYjs for all
pi, jq P t1, 2, ¨ ¨ ¨ , pu ˆ t1, 2, ¨ ¨ ¨ , pu.

ErYiYjs “
1

p2πq
p
2

ż `8

´8

¨ ¨ ¨

ż `8

´8

yiyj exp
!

p
ź

i“1

exp
!

´y2
i

2

))

dxpdxp´1 ¨ ¨ ¨ dx1 “ 0 (1.12)

“

#

ş`8

´8
yi exp t

´y2i
2
udyi ˆ

ş`8

´8
yj exp t

´y2j
2
udyj ˆ p2πq

´p
2

ś

k‰i,j

ş`8

´8
exp t

´y2k
2
u “ 0 i ‰ j

ş`8

´8
y2
i exp t

´y2i
2
u ˆ

ś

k‰i

ş`8

´8
exp t

´y2k
2
u “ 1 i “ j

(1.13)

It is clear from (1.13), that the covariance matrix of Ỹ is the pˆp identity matrix denoted
by Ip. Now, using Lemma 1.7, we can deduce that the covariance matrix of X̃ “ CỸ `µ
is CCT “ A´1 “ Σ.

Therefore,we proved that if X̃ follows a multivariate normal distribution with a density
function as shown in (1.1), then the expected value of the vector is µ̃ and the covariance
matrix is Σ. When X̃ is a multivariate normal random vector with mean µ̃ and variance
σ, we denote it as X̃ „ Nppµ̃,Σq. The p in the notation is sometimes ignored in the
report if the dimension of the random vector X̃ is clear. Additionaly, the density of a
multivariate normal distribution is denoted as npx̃ | µ̃,Σq.

Finally, the section can be concluded with the following theorem that summarizes all
the results discussed so far.

Theorem 1.1. If X̃ is a p-dimensional vector corresponding to the density function fX̃
given below, then the expected value and variance of the vector are b̃ and A´1 respectively.

fX̃px̃q “
1

p2πq
p
2 |Σ|

1
2

exp

„

´1

2
px̃´ b̃qTApx̃´ ˜̃bq


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Conversely, given a vector b̃ P Rp and a symmetric positive definite matrix Σ, then there
exists a multivariate density function

1

p2πq
p
2 |Σ|

1
2

exp

„

´1

2
px̃´ b̃qTApx̃´ ˜̃bq



such that the vector corresponding to this density has mean µ̃ and variance Σ.

1.3 Marginal distribution and independence of normal
random vectors

In this section, we prove that the marginal density of any q ă p components of the p-
dimensional Gaussian random vector X̃ is also a multivariate normal vector. Let the
components of X̃ be re-ordered in such a way that the q components of our interest are
written as the first q components of the vector X̃. Let this sub-vector be called X̃p1q.
Denote the remaining pp´qqˆ1 subvector by X̃p2q. Before proving the statement claimed,
it is important to go through some notations that I will use quite often in the remainder
of the chapter.

X̃p1q
“

»

—

—

—

–

x1

x2
...
xq

fi

ffi

ffi

ffi

fl

and X̃p2q
“

»

—

—

—

–

xq`1

xq`2
...
xp

fi

ffi

ffi

ffi

fl

Denote the expected values of X̃p1q and X̃p2q by µ̃p1q and µ̃p2q respectively. In addition to
that, the following notations will also be used often.

Σ11 “ ErpX̃p1q
´ µ̃p1qqpX̃p1q

´ µ̃p1qqT s

Σ22 “ ErpX̃p2q
´ µ̃p2qqpX̃p2q

´ µ̃p2qqT s

Σ12 “ ErpX̃p1q
´ µ̃p1qqpX̃p2q

´ µ̃p2qqT s

It is easy to observe that

µ̃ “

„

µ̃p1q

µ̃p2q



and Σ “

„

Σ11 Σ12

Σ21 Σ22



where Σ21 “ ΣT
12

Lemma 1.3. Let X̃ and Σ be partitioned as mentioned above. If Σ12 “ ΣT
21 “ 0qˆpp´qq.

Then X̃p1q and X̃p2q are independent and normally distributed random vectors.

Proof. Let the quadratic form in npx̃ | µ̃,Σq be denoted by Q i.e. Q “ px̃´ µ̃qTΣpx̃´ µ̃q.
If Σ12 “ ΣT

21 “ 0qˆpp´qq, as given in the statement of the lemma, then it is easy to show
that:

Q “ px̃p1q ´ µ̃p1qqTΣ11px̃
p1q
´ µ̃p1qq ` px̃p2q ´ µ̃p2qqTΣ22px̃

p2q
´ µ̃p1qq :“ Q1 `Q2 (1.14)

Σ is now a block matrix with 0 as off-diagonal matrices.

Therefore, detpΣq “ detpΣ11q ˆ detpΣ22q (1.15)
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Using (1.14) and (1.15) in the multivariate normal density function npx̃ | µ̃,Σq, one can
show that

npx̃ | µ̃,Σq “ npx̃p1q | µ̃p1q,Σ11q ˆ npx̃
p2q
| µ̃p2q,Σ22q (1.16)

It is clear from (1.16), that the random vectors X̃p1q and X̃p2q are independent random
vectors. Now, we are left to prove that the random vectors X̃p1q and X̃p2q are multivariate
normal random variables. This can be proved by showing that both the subvector have
a marginal normal density.

fX̃p1q “

ż

@xq`1

¨ ¨ ¨

ż

@xp

npx̃p1q | µ̃p1q,Σ11q ˆ npx̃
p2q
| µ̃p2q,Σ22qdxp ¨ ¨ ¨ dxq`1 “ npx̃p1q | µ̃p1q,Σ11q

(1.17)

Similarly, it can be shown that the marginal density of X̃p2q is npx̃p2q | µ̃p2q,Σ22q. This
proves the lemma that X̃p1q and X̃p2q are independent and normally distributed random
vectors.

This proves that the marginal density of any subset of components of the multivariate
normal random vector X̃ is again normally distributed provided Σ12 “ ΣT

21 “ 0.

Remark 1.2. Note that Σ12 “ ΣT
21 “ 0 is true when it is given beforehand that X̃p1q

and X̃p2q are any two independently distributed random vectors. However, the converse
of this is not always true. The converse has been proved to be true when X̃ follows a
multivariate normal distribution.

The results proved so far have been summarized in the theorem below:

Theorem 1.2. 1. Let X̃ “ prX̃p1qsT , rX̃p2qsT q follow a multivariate normal distri-
bution i.e. X̃ „ Nppµ̃,Σq. Assume that covpXp1q

i , X
p2q
j q “ 0 where rX̃p1qsT “

pX
p1q
1 , ¨ ¨ ¨ , X

p1q
q q and rX̃p2qsT “ pX

p2q
q`1, ¨ ¨ ¨ , X

p1q
p q. Then, according to the notation

mentioned earlier,

• X̃p1q „ Nppµ̃
p1q,Σ11q and X̃p2q „ Nppµ̃

p2q,Σ22q.

• X̃p1q and X̃p2q are independent random vectors i.e. X̃p1q K X̃p2q.

2. Let X̃ „ Nppµ̃,Σq, then a necessary and sufficient condition for one subset of
random variables, say X̃p1q, and the subset consisting of the remaining variables
X̃p2q to be independent is covpXp1q

i , X
p2q
j q “ 0 for all Xp1q

i P tX
p1q
1 ¨ ¨ ¨ , X

p1q
q u and

X
p2q
i P tX

p2q
q`1 ¨ ¨ ¨ , X

p1q
p u

Remark 1.3. However, it is possible for two random vectors X̃ “ pX1, ¨ ¨ ¨ , Xmq
T and

Ỹ pY1, ¨ ¨ ¨ , Ynq
T to have the following set of properties:

• pX̃T , Ỹ T q are not jointly Gaussian.

• covpXi, Yjq “ 0 for all Xi P tX1 ¨ ¨ ¨ , Xmu and Yj P tY1 ¨ ¨ ¨ , Ynu

• X̃ and Ỹ are individually Gaussian random vectors

• X̃ and Ỹ are not independent.
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We have proved that the marginal distribution of multivariate normal distribution is
again normally distributed in a very particular case. We now aim to prove the statement
without any specific assumptions on the matrix Σ. Before doing that, a couple of results
have been recalled or proved below.

The matrices mentioned are block matrices

det

„

Arˆr Brˆs

0sˆr Csˆs



“ det

„

Arˆr 0rˆs
Bsˆr Csˆs



“ detAˆ detC (1.18)

Theorem 1.3. Let X̃ „ Nppµ̃,Σxq. Then Ỹ “ CX̃ for some non-singular C is also
normally distributed. In fact, Ỹ „ NppCµ̃,CΣxC

T q

Proof. Since C is an invertible matrix, the following transformation is well-defined:

Ỹ “ C´1X̃ (1.19)

The Jacobian of the transformation 1.19 is detC´1. This imples the following equations:

|J | “ |detC´1
| “

1

|detC|
“

d

1

|detC|2
“

d

1

|detC| ˆ |detCT |
“

d

|detΣx|

|detC||detΣx||detCT |

(1.20)

Now, the density of Ỹ can be calculated as follows:

fỸ py1, ¨ ¨ ¨ , ypq “ |J | ˆ fX̃px1pỹq ¨ ¨ ¨ , xppỹqq (1.21)

Using 1.19, 1.20 and 1.21 it can be proved that Ỹ „ NppCµ̃,CΣxC
T q.

Theorem 1.4. Let X̃ „ Nppµ̃,Σq, then the marginal distribution of any subset of com-
ponents of X̃ is multivariate normal with means and variances obtained by taking corre-
sponding components of µ̃ and Σ̃ respectively.

Proof. Without loss of generality, we can assume that the components of X̃ whose
marginal density we wish to calculate are the last p ´ q components of X̃. Denote this
sub-vector by X̃p2q while the first q components form the subvector X̃p1q. Then it is easy
to show that there exists an invertible matrix B such that covpXp1q `BXp2q, Xp2qq “ 0.
In particular, B “ ´Σ12Σ´1

22 . Now, let Y p1q “ Xp1q ` BXp2q “ Xp1q ´ Σ12Σ22 and
Y p2q “ Xp1q. This can be written in the block-matrix form as follows:

«

Y
p1q
qˆ1

Y
p2q
pp´qqˆ1

ff

“

„

Iq ´Σ12Σ´1
22

0pp´qqˆq Ip´q



«

X
p1q
qˆ1

X
p2q
pp´qqˆ1

ff

or Ỹ “ AX̃ in short.

Since Ỹ “ AX̃ and X̃ „ Nppµ̃,Σq, we can use Theorem 1.3 to claim that Ỹ „

NppAµ̃,AΣAT q. Simple block matrix calculations prove that

ErỸ s “
„

µ̃p1q ´ Σ12Σ´1
22 µ̃

p2q

µ̃p2q



and VrỸ s “
„

Σ11 ´ Σ12Σ´1
22 Σ21 0

0 Σ22



Now, using Theorem 1.2, it is clear that X̃p2q „ N p ˜µp2q,Σ22q Since the components of
interest in X̃ can be written as the subvector X̃p2q, we have shown that if X̃ „ Nppµ̃,Σq,
then any subset of the elements of X̃ also follow the Gaussian distribution.
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Corollary 1.1. Let X̃ „ Nppµ̃,Σq, then any component Xi of X̃ follows the univariate
normal distribution.

Proof. This follows directly from the Theorem 1.4.

Remark 1.4. We just proved that if X̃ „ Nppµ̃,Σq, then each component Xi of X̃ is
also normally distributed. However, the converse of this is not always true. It is possible
for random variables X1, X2 ¨ ¨ ¨ , Xn to exist such that each one of them is a Gaussian
random variable while their joint density is not Gaussian.

1.4 Conditional distributions
In this section, we prove the fact that the conditional distributions derived from joint
normal distributions are also normal. Let us assume, once again, that the vector X̃ is
divided into two subvectors X̃p1q and X̃p1q of sizes q ˆ 1 and pp´ qq ˆ 1 respectively. An
important and useful theorem is first proved before proving the main theorem of interest.

Theorem 1.5. If X̃ „ Nppµ̃,Σq and let Z̃ “ DX̃ for some qˆp matrix D of rank q ď p.
Then,

Z̃ „ NppDµ̃,DΣDT
q

Proof. First of all, if rankpDq “ q “ p, then D is a full rank matrix. Then the theorem
mentioned will be true according to the Theorem 1.3 proved earlier.

Now, assume that rankpDq “ q ă p. Then, D is a singular matrix with q linearly
independent row vectors td̃1, d̃2 ¨ ¨ ¨ , d̃qu. These q vectors span a subspace in Rp. Since
every vector space has a basis, there exist vectors tẽ1, ¨ ¨ ¨ , ẽp´qu in Rp such that the
set td̃1, d̃2 ¨ ¨ ¨ , d̃q, ẽ1, ¨ ¨ ¨ , ẽp´qu form a basis for the real vector space Rp. Let E be the
pp´ qq ˆ p matrix with the vectors ẽ1, ¨ ¨ ¨ , ẽp´qu as rows.

C “

„

D
E



will be a pˆ p full rank matrix. Additionally,
„

Z̃

W̃



“

„

D
E



X̃

Therefore for every rank deficient matrix Dqˆp, there exists an invertible full rank matrix
C of size pˆp. Clearly, pZ̃T , W̃ T qT is a non-singular transformation of X̃. Since, X̃ follows
a multivariate normal distribution, the vector pZ̃T , W̃ T qT is Gaussian as well according
to Theorem 1.3. Then according to the Theorem 1.4, Z̃ has a marginal normal density.
In addition to that, Theorem 1.4 also implies that

E
!

„

Z̃

W̃



)

“

„

D
E



ErX̃s and V
!

„

Z̃

W̃



)

“

„

DΣDT DΣET

EΣDT EΣET



(1.22)

Therefore, Z̃ „ NppDµ̃,DΣDT q

Theorem 1.6. Let X̃ be partitioned into X̃p1q and X̃p2q as usual. The notations µ̃p1q,
µ̃p2q, Σ11, Σ22, Σ12, and Σ21 mean the same as the way they were defined earlier. Let
X̃ „ Nppµ̃,Σq. Then the conditional distribution of X̃p1q given X̃p2q “ x̃p2q is a q-variate
normal density. In particular, it is:
npx̃p1q| µ̃p1q ` Σ12Σ´1

22 px̃
p2q ´ µ̃p2qq, Σ11 ´ Σ12Σ´1

22 Σ21q
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Proof. Consider the transformations we defined in Theorem 1.4. We also proved that
Ỹ p1q „ N pµ̃p1q ´ Σ12Σ´1

22 µ̃
p2q,Σ11 ´ Σ12Σ´1

22 Σ21q, Ỹ p2q „ N pµ̃p2q,Σ22q and Ỹ p1q K Ỹ p2q.
These transformations have been re-defined here for convenience.

Y p1q “ Xp1q
`BXp2q

“ Xp1q
´ Σ12Σ22 and Y p2q “ Xp1q (1.23)

Then the joint density of Ỹ p1q and Ỹ p2q is given by:

fỸ p1q,Ỹ p2qpỹ
p1q, ỹp2qq “ npỹp1q|µ̃p1q ´ Σ12Σ´1

22 µ̃
p2q,Σ11 ´ Σ12Σ´1

22 Σ21q ˆ npỹ
p2q
|µ̃p2q,Σ22q

The joint density of X̃p1q and X̃p2q can be obtained using the joint density of Ỹ p1q and
Ỹ p1q. The Jacobian of the transformation (1.23) is 1. Therefore, the joint density of X̃p1q

and X̃p2q can be obtained by replacing ỹp1q by x̃p1q´Σ12Σ´1
22 x̃

p2q and replacing ỹp2q by x̃p2q.
Simple calculations will show that the joint density of x̃p1q and x̃p2q is:

fX̃p1q,X̃p2qpx̃
p1q, x̃p2qq “ npx̃p1q|µ̃p1q ` Σ12Σ´1

22 px̃
p2q
´ µ̃p2qq,Σ11.2q ˆ npx̃

p2q
|µ̃p2q,Σ22q

where Σ11.2 “ Σ11 ´ Σ12Σ´1
22 Σ21. Since X̃p2q has marginal normal density with mean µ̃

and variance Σ22, we can use the definition of conditional distribution to come to the
conclusion that:

fp
˜

xp1q|X̃
p2q
“ x̃p2qq “ npx̃p1q|µ̃p1q ` Σ12Σ´1

22 px̃
p2q
´ µ̃p2qq,Σ11.2q

Observation

1. ErX̃p1q|X̃p2q “ x̃p2qs “ µ̃p1q`Σ12Σ´1
22 px̃

p2q´ µ̃p2qq depends linearly on the components
held fixed i.e. tx̃p2q1 , ¨ ¨ ¨ , x̃

p2q
p´qu

2. VrX̃p1q|X̃p2q “ x̃p2qs “ Σ11 ´ Σ12Σ´1
22 Σ21. Since X̃p2q does not depend on the fixed

value taken X̃p2q

1.5 Characteristic Functions
Definition 1.5. The characteristic function of a p ˆ 1 random vector X̃ is given by
φ : Rp ÝÑ C such that

φpt̃q “ Erexp it̃T X̃s for all t̃ P Rp and i here denotes the imaginary number (1.24)

In addition to that,

φpt̃q “ Ercospt̃T X̃qs ` iErsinpt̃T X̃qs for all t̃ P Rp

Clearly, the Definition 1.24 is very similar to that of moment generating function.

Definition 1.6. Let X̃ be a random vector. Then the function MX̃pt̃q “ Erexp t̃T X̃s in
some neighbourhood of origin.

One of the most useful properties of the moment generating function (MGF) is that
the existence of an MGF uniquely determines a distribution function. However, the major
drawback of the MGF is that it may not always exist for a given random vector. This
is because of the strong requirement that MX̃pt̃q has to exist in some neighbourhood of
origin. So, we wish to find a generating function that exists for all random vectors and
also uniquely corresponds to a particular distribution function. The function with these
desirable properties is the characteristic function.
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1.5.1 Properties of the characteristic function

1. Characteristic function always exists for pˆ1 random vector X̃ i.e. Erexp it̃X̃s ă 8
for all t̃ P Rp.
This is because:

Erexptit̃X̃us “

ż

R
¨ ¨ ¨

ż

R
exptit̃X̃ufX̃px̃qdx1 ¨ ¨ ¨ dxp ď

ż

R
¨ ¨ ¨

ż

R
| exptit̃X̃u||fX̃px̃q|dx1 ¨ ¨ ¨ dxp “ 1

In other words φpX̃q ď 1 for all t̃ P Rp.
However, in the case of a moment generating function, it cannot always exist be-
cause:

Eretxs ď
ż t0

´t0

etxfXpxqdx ď

ż t0

´t0

ett0fXpxqdx ÝÑ 8 as t ÝÑ 8

2. φ´X̃pt̃q “ φX̃pt̃q where the bar indicates complex conjugate. The reason is given
below:

φ´X̃pt̃q “

ż

R
¨ ¨ ¨

ż

R
expt´it̃X̃fX̃px̃qudx1 ¨ ¨ ¨ dxp “

ż

R
¨ ¨ ¨

ż

R
exptit̃X̃fX̃px̃qudx1 ¨ ¨ ¨ dxp “ φX̃pt̃q

This implies that the characteristic function of ´X̃ is the complex conjugate of the
characteristic function of X̃.

3. Let X be any random variable with characteristic function φXptq for all t P R. Then
φX is uniformly continuous on R. Without loss of generality, one can assume that
t ą s and t “ s` h for some h ą 0. Then simple calculations can show that:

|φXptq ´ φXpsq| ď

ż

R
|eisxpeihx ´ 1qfXpxq|dx ď

ż

R
|eihx ´ 1|fXpxqdx ď

ż

R
2fXpxqdx

Using the Dominated convergence theorem shows that:

limhÑ0

ż

R
|eihx ´ 1|fXpxqdx “

ż

R
limhÑ0|e

ihx
´ 1|fXpxqdx “ 0

Therefore, φX is uniformly continuous on R.

4. Let X̃ and Ỹ be independent random vectors. Then, φX̃`Ỹ pt̃q “ φX̃pt̃q ˆ φỸ pt̃q@t̃ P R
p

This can easily be proved using the definitions of characteristic function and inde-
pendence of random vectors.

Definition 1.7. Let g be a complex valued function i.e. gpx̃q “ g1px̃q ` ig2px̃q for some
real valued functions g1 and g2. Then,

Ergpx̃qs “ Erg1px̃qs ` iErg2px̃qs (1.25)

Lemma 1.4. Let X̃T “ ptX̃p1quT , tX̃p2quT q. If X̃p1q and X̃p1q are independent and gpx̃q “
gp1qpx̃p1qqgp2qpx̃p2qq, then

Ergpx̃qs “ Ergp1qpx̃p1qqs ˆ Ergp2qpx̃p2qqs

12



Proof. The lemma can be proved using simple manipulations, definition 1.7, and the
definition of independence.

Certain special cases of this theorem provide us with quite useful results:

1. Let gpx̃q “ exptit̃T X̃u in the above lemma. Then the lemma now is equivalent to:

X̃p1q
K X̃p2q

ùñ φX̃p1q`X̃p2qpt̃q “ φX̃p1qpt̃q ˆ φX̃p2qpt̃q

2. Now, let X̃ have independent components tX1, ¨ ¨ ¨ , Xpu i.e. fX̃px̃q “
śp

i“1 fXipxiq.
Then the lemma above can be used to prove that:

φX̃pt̃q “
p
ź

i“1

φXjptjq (1.26)

Theorem 1.7. Let X̃ „ Nppµ,Σq. Then the characteristic function of X̃ is given by:

φX̃pt̃q “ exp
!

it̃T µ̃´
1

2
t̃TΣt̃

)

@t̃ P Rp (1.27)

Proof. Σ is a symmetric, positive definite matrix ùñ there exists an invertible matric
C such that CTΣ´1C “ Ip. Consider the following transformation that we considered
earlier:

Ỹ “ C´1
pX̃ ´ µ̃q (1.28)

The Jacobian of the above transformation is J “ |detC|. Then the density of Ỹ is given
by:

fỸ pỹq “ fx̃pỹq ˆ |J | “
1

p2πq
p
2

expt
´1

2
ỹT ỹu

That is, Ỹ „ N p0̃, Iq. Since covpYi, Yjq “ 0@i ‰ j, Yi K Yj for all i ‰ j. Then, using 1.26
we can write that:

φỸ pũq “ ErexptiũT Ỹ us “
p
ź

j“1

ErexptiuiYjus where Yi „ N p0, 1q for all j P t1, 2, ¨ ¨ ¨ , pu

(1.29)

We know that the normal univariate characteristic function of Yj is expt
´u2j

2
u. Therefore,

using 1.29 the characteristic function pf Ỹ is:

φỸ pu1, ¨ ¨ ¨ , upq “ expt
´1

2
ũT ũu

Now, using the transformation 1.28, the characteristic function of X̃ can be written as:

φX̃pt̃q “ Erexptit̃T pCỸ ` µ̃qus “ Erexptit̃T pCỸ qus ˆ Erexptit̃T µ̃s (1.30)

Erexptit̃T µ̃s is a constant.Since C is invertible and t̃ P Rp, the term t̃TC also spans Rp.
Therefore,

Erexptit̃T pCỸ qus “ φỸ pC
T t̃q “ exp

!

´1

2
t̃TΣt̃

)

(1.31)

13



Using (1.31) in (1.30), we can prove that the characteristic function of X̃ is

φX̃pt̃q “ exp
!

it̃T µ̃´
1

2
t̃TΣt̃

)

@t̃ P Rp

Theorem 1.8. Real valued random variables X1, X2, ¨ ¨ ¨ , Xp are jointly Gaussian

if and only if

ãT X̃ “
řn
i“1 aiXi is Gaussian for all ã P Rp

Proof. (ñ) Assume that pX1, X2, ¨ ¨ ¨ , Xpq
T is jointly Gaussian. Therefore,

φX̃pt̃q “ exp
!

it̃T µ̃´
1

2
t̃TΣt̃

)

@t̃ P Rp

Let U “
řp
i“1 aiXi, then it can be shown that:

φUpuq “ ErexptiãpuX̃qus “ φuX̃pãq “ exp
!

iãT puµ̃q ´
1

2
ãT pu2Σqã

)

@t̃ P Rp

It is clear from the characteristic function of U that U „ Nppã
T µ̃, ãTΣãq

(ð ) Conversely, let Σp
i“1aiXi be Gaussian for all ã P Rp. Then, each component Xi

is Gaussian as well as Xi “ ẽTi X̃. Assume that Xi „ Nppµi, σ
2
i q such that µi and σ2

i ă 8

for all i “ 1, 2, ¨ ¨ ¨ , p. Now, from Cauchy-Schwarz inequality,

ErXiXjs ď pErX2
i sErX2

j sq
1
2 (1.32)

Now variance of X̃ is the matrix with covpXi, Xjq as the pi, jqth entry.covpXi, Xjq ă

8 ùñ VrXis ă 8 ùñ ErX2
i s ă 8. Then, from (1.32), it is clear that variance

and mean of X̃ are well defined. When U “ σpi“1uiXi “ ũT X̃, then ErU s “ ũT X̃ and
VrU s “ ũTΣũ where ũT “ pu1, u2, ¨ ¨ ¨ , upq. Then it can be shown that:

φŨptq “ ErexptiptũqT X̃us “ characteristic function of a normal distribution

Since characteristic function uniquely determines the corresponding density function, the
claim that X̃ is jointly Gaussian is proved.

Remark 1.5. The above theorem proves that the multivariate Gaussian is the only
distribution with the property that every linear combination of its components is normally
distributed.

1.6 Multiple correlation coefficient
We earlier proved that the conditional density of X̃p1q given X̃p1q “ x̃p2q, when X̃ follows
a multivariate Gaussian distribution, is also normal with mean µ̃p1q`Σ12Σ´1

22 px̃
p2q´ µ̃p2qq

and variance Σ11.2 “ Σ11´Σ12Σ´1
22 Σ21. In this section, we denote the matrix Σ12Σ´1

22 by B.
The general pi, jqth element of B is denoted by bij “

řp´q
k“1 covpX

p1q
i , X

p2q
k qcovpX

p1q
k , X

p2q
j q.
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Definition 1.8. Let the pi, jqth element of the matrix Σ11.2 be given by σij.q`1,¨¨¨ ,p. Then:

1. σij.q`1,¨¨¨ ,p for i ‰ j is called the partial covariance.

2. σij.q`1,¨¨¨ ,p (i.e. i = j) is called partial variance.

Note that the letters that follow a dot in the symbol σij.q`1,¨¨¨ ,p are the components of X̃
that are given to us.

Definition 1.9. The partial correlation betweenXi andXj while holdingXq`1, ¨ ¨ ¨ , Xp

fixed is given by:

ρij.q`1,¨¨¨ ,p “
σij.q`1,¨¨¨ ,p

?
σii.q`1,¨¨¨ ,p

?
σjj.q`1,¨¨¨ ,p

The matrix B “ Σ12Σ´1
22 is called the matrix of regression coefficients of X̃p1q

on X̃p2q. The function µ̃p1q`Bpx̃p2q´ µ̃p2qq is called regression function. Additionally,
the vector of residuals of X̃p1q from its regression on X̃p2q is given by:

X̃p1.2q
“ X̃p1q

´ µ̃p1q ´BpX̃p2q
´ µ̃p2qq

The reason why they are called that way can only be understood after going through
this section.

Let X̃ be partitioned into X̃p1q and X̃p2q as usual. In the reminder of the section, our
aim to study the properties of the vector BX̃p2q.

Theorem 1.9. The components of X̃p1.2q are uncorrelated with components of X̃p2q.

Proof. Observe that X̃p1.2q “ Ỹ p1q ´ ErỸ p1qs where Ỹ p1q “ X̃p1q ´BX̃p2q. Then according
to Theorem 1.4, the covariance matrix of Y is given by:

VrỸ s “
„

Σ11 ´ Σ12Σ´1
22 Σ21 0

0 Σ22



(1.33)

Using (1.33),

covpX̃p1.2q, X̃p2q
q “ covpỸ p1q, X̃p2q

q “ covpX̃p1q, X̃p2q
q ´BcovpX̃p2q, X̃p2q

q “ ´Σ12 “ 0̃

Intuitively, the effect of X̃p2q has been removed from X̃p1.2q

Theorem 1.10. For every vector α̃ P Rq,

VrXp1.2q
i s ď VrXi ´ α̃

T X̃p2q
s

Proof. Let σT
piq denote the i

th row of Σ12 while β̃Ti denotes the ith row of B such that they
follow βTi “ σT

piqΣ
´1
22 . Using the Theorem 1.9, we can show that:

VrXi ´ α̃
T X̃p2q

s “ ErXi ´ µi ´ α̃
T
pX̃p2q

´ µ̃p2qqs2 “ ErX̃p1.2q
i s

2
` ErpβTpiq ´ αT qpX̃p2q

´ µ̃p2qqs2

(1.34)

15



Then the term ErpβT
piq´α

T qpX̃p2q´ µ̃p2qqs2 in (1.34) can be simplified to give the following
result:

ErpβTpiq ´ αT qpX̃p2q
´ µ̃p2qqs2 “ pβ̃piq ´ α̃q

TΣ22pβ̃piq ´ α̃q

All covariance matrices are positive semi-definite matrices. Therefore, pβ̃piq´α̃qTΣ22pβ̃piq´

α̃q ě 00. Hence, one of the points at which (1.34) is minimized is at α̃ “ β̃piq. Additionally,
ErX̃p1.2q

i s2 “ VrX̃p1.2q
i s. These facts together imply that VrXp1.2q

i s ď VrXi ´ α̃
T X̃p2qs.

Remark 1.6. 1. If Σ22 is the covariance matrix associated with a normal density,
then, minimum is attained at the unique vector ᾱ “ β̃piq. However, if Σ22 is positive
semi definite and not positive definite, then the maximizing vector is not unique.

2. It follows from the theorem just proved that Xp1q
i “ X̃i

p1q
´ µ̃

p1q
i ´ β̃T

piqpX̃
p2q ´ µ̃p2qq.

Therefore, µ̃p1qi ` β̃T
piqpX̃

p2q ´ µ̃p2qq is the best estimator in the sense that it has the
least variance among all linear estimators.

Corollary 1.2. corrpXi, β̃
T
piqX̃

p2qq ě corrpXi, α̃
T
piqX̃

p2qq for all vectors α̃ P Rp´q

Proof. Let Y “ α̃T pX̃p2q ´ µ̃p2qq. Correlation is defined as follows:

corrpX, Y q “
covpX, Y q

a

VrXs
a

VrY s

The right and left hand side of corrpXi, β̃
T
piqX̃

p2qq ě corrpXi, α̃
T
piqX̃

p2qq have the terms
b

VrαT X̃p2qs and
b

VrβT
piqX̃

p2qs respectively, both of which have some finite variance value.

But the vectors α̃T X̃p2q and β̃T
piqX̃

p2q can be re-scaled to make them have unit variance.
Rescaling does not change the correlation values, therefore, the following can be assumed:

Erα̃T pX̃p2q
´ µ̃p2qqs2 “ Erβ̃TpiqpX̃p2q

´ µ̃p2qqs2

We have proved in Theorem 1.10 that VrXp1.2q
i s “ VrXi ´ β̃piq

T
X̃p2qs. Using the formula

VrX ` Y s “ VrXs ` VrY s ` 2covpX, Y q, we can simplify VrXp1.2q
i s ď VrXi ´ α̃T X̃p2qs as

follows:

σii ´ 2ErpXi ´ µiqβ̃TpiqpX̃p2q ´ µ̃
p2q
qs ` Vrβ̃TpiqX̃p2q

s ď σii ´ 2ErpXi ´ µiqα̃
T
pX̃p2q ´ µ̃

p2q
q ` Vrα̃T X̃p2q

s.

The statement we wish to prove follows from the above equation.

Remark 1.7. The theorem above states that the linear combination of Xp2q
i s that "best"

linearly approximate Xi is β̃TpiqX̃
p2q in the sense that it has least variance among all other

linear estimators α̃T X̃p2q.

Definition 1.10. The maximum correlation betweenXiandα
T X̃p2q, which we have proved

as corrpXi, β̃
T
piqX̃

p2qq, is called the multiple correlation coefficient between Xi and
X̃p2q. From the definition, it is understood that the multiple correlation coefficient mea-
sures the maximum linear association between Xi and X̃p2q.

Multiple correlation coefficient between Xi and tX̃p2quT “ pX
p2q
p`1, ¨ ¨ ¨ , X

p2q
q q is denoted

by R̄i.q`1,¨¨¨ ,p . This coefficient can be simplied as follows:
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R̄i.q`1,¨¨¨ ,p “
ErpXi ´ µiqβ̃

T
piqpX̃

p2q ´ µ̃p2qqs

pσiiVrβ̃Tpiqsq
1
2

“

b

σ̃T
piqΣ

´1
22 σ̃piq

?
σii

(1.35)

Lemma 1.5. Let A be a pˆ p square matrix partitioned as given below:

A “

„

A11 A12

A21 A22



Let A11 be an invertible q ˆ q matrix. Then,

detpAq “ detpA11 ´A12A
´1
22 A21q ˆ detpA22q

Proof. Define the following block matrices:

B “

„

Iq ´A12A
´1
22

0 Ip´q



and C “

„

Iq 0
´A12A

´1
22 Ip´q



One can verify that the matrix multiplication of matrices B,A and C, in the order
mentioned is:

BAC “

„

A11 ´A12A
´1
22 A21 0

0 A22



ùñ detpBACq “ detpA11 ´A12A
´1
22 A21q ˆ detpA22q

(1.36)

However, the way the matrices B and C have been defined, it is clear that detpBq and
detpCq is 1. This along with (1.36) proves the lemma.

Theorem 1.11. The partial variance of any component of X̃ cannot be greater than its
corresponding variance.

Proof. From equation (1.35), we can show that:

1´ R̄2
“
σii ´ σ

T
piqΣ

´1
22 σpiq

σii
(1.37)

where we sometimes write R̄ in short for R̄i.q`1,¨¨¨ ,p

Definition 1.11. Define a block matrix Σi as follows:
„

σii σ̃T
piq

σ̃piq Σ22



Then, according to the Lemma 1.5,

detΣi “ detpσii ´ σ̃
T
piqΣ

´1
22 σ̃piqq ˆ detΣ22 (1.38)

Using (1.37) and (1.38), we can show that:

1´ R̄2
“

detpΣiq

σii ˆ detpΣ22q
(1.39)
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We know that σii.q`1,¨¨¨p is the pi, iqth element of the matrix Σ11.2 “ Σ11 ´ Σ12Σ´1
22 Σ21.

Then:

σii.q`1,¨¨¨p “ σii ´ σ̃
T
piqΣ

´1
22 σ̃piq

This implies that

σii.q`1,¨¨¨ ,p “ σiip1´ R̄
2
q

The term σii.q`1,¨¨¨ ,p is the variance of X̃p1q given that we know x̃p2q and therefore non-
negative. This implies that R̄2 ď 1. This in turn implies the claim we wished to prove.

Remark 1.8. Some observations have been noted below as remarks

1. Now let us look closely at the equation σii.q`1,¨¨¨ ,p “ σiip1 ´ R̄2q. When R̄ is closer
to one, it implies that Xi is being approximated well using X̃p2q. Since, Xi is being
“well-explained" by X̃p2q, it is only natural to assume that the variance of Xi when
X̃p2q is known is low. This is what we predict from the above equation as well.

2. We earlier showed that X̃p1q
i “ X̃

p1q
i ´ µ̃

p1q
i ´ β̃T

piqpX̃
p2q´ µ̃p2qq where β̃T

piq is the i
th row

of B. This, in matrix form, can be written as X̃p1q “ µ̃p1q ` Σ12Σ´1
22 pX̃

p2q ´ µ̃p2qq.
Thus, it is the best linear predictor of X̃p2q in the sense that it has least variance
among all linear estimators of X̃p2q. The proof that this is the best linear predictor
of X̃p1q does not depend on the distribution that X̃ follows. Since X̃p1q can be
estimated using µ̃p1q ` Σ12Σ´1

22 pX̃
p2q ´ µ̃p2qq, the term which is a function of X̃p2q is

called the regression funtion of X̃p1q on X̃p2q.

3. We know that the vector of residuals for X̃p1q will be X̃p1q ´
xX̃p1q. Since, xX̃p1q “

µ̃p1q ` Σ12Σ´1
22 pX̃

p2q ´ µ̃p2qq predicts X̃p1q, we can call the vector

X̃p1q
´ µ̃p1q ´ Σ12Σ´1

22 pX̃
p2q
´ µ̃p2qq.

is called the vector of residuals.

4. It can be shown that varaince of the residual vector defined above is Σ11´Σ12Σ´1
22 Σ21.

If X̃ is assumed to be a normal random vector, then the variance of the residual
vector is same as the variance of X̃p1q provided X̃p2q is known. However, if X̃ is not
normally distributed, then Σ11´Σ12Σ´1

22 Σ21 can simply be regarded as the variance
of the residual vector.

1.7 Moments and Cumulants
Definition 1.12. The kth order moment of a random vector X̃T “ px1, X2, ¨ ¨ ¨ , Xpq is
defined as ErXi1Xi2 ¨ ¨ ¨Xiks where ti1, i2 ¨ ¨ ¨ , iku Ď t1, 2, ¨ ¨ ¨ , pu.

The following relationship between the moments and characteristic function φX̃pt1, t2, ¨ ¨ ¨ , tkq
of X̃ can easily be verified.

ErXi1Xi2 ¨ ¨ ¨Xiks “
1

ik
BkφX̃

Bt1Bt2 ¨ ¨ ¨ Btk

ˇ

ˇ

ˇ

ˇ

ˇ

t“0

(1.40)
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Definition 1.13. Assuming all the moments of X̃ exist, the cumulants of X̃ are de-
fined as coefficients, κ, in the multinomial Taylor series expansion (centered at origin) of
lnφX̃pt1, t2, ¨ ¨ ¨ , tpq .

In order to state the kth order multinomial Taylor expansion in a simple manner, some
notation needs to be mentioned.

• α̃T “ pα1, α2, ¨ ¨ ¨ , αpq is a p-index if it is p-tuple with αi ě 0 @i P t1, 2, ¨ ¨ ¨ , pu.

• |α̃| “ α1 ` α2 ` ¨ ¨ ¨ ` αp

• α̃! “ α1!α2! ¨ ¨ ¨αp!

• x̃α̃ “ xα1
1 x

α2
2 ¨ ¨ ¨ x

αp
p

• Let f be a class Ck`1 function on Rp. Then,

B
α̃f “

B|α̃|

Bxα1
1 x

α2
2 ¨ ¨ ¨ x

αp
p

Using the notations defined so far, the multinomial Taylor series expansion is men-
tioned below:

Let f be a real valued class Ck`1 function on Rp. Then the kth order several variable
expansion of f centered at the vector ã is given by:

fpx̃q “
ÿ

|α̃|ďk

Bα̃fpãq

α̃!
px̃´ ãqα̃ `Rf

kpx̃, ãq (1.41)

where Rf
kpx̃, ãq denotes the reminder for the kth order expansion.

If we use (1.41) to write an expansion for lnφX̃pt1, t2, ¨ ¨ ¨ , tpq , one can show that for
some function g:

lnφX̃pt1, ¨ ¨ ¨ , tpq “ gpit1, ¨ ¨ ¨ , itpq “
ÿ

|α̃|ă8

B|α̃|fp0̃q

Bpit1qα1Bpit2qα2 ¨ ¨ ¨ Bpitpqαp
pit1q

α1pit2q
α2 ¨ ¨ ¨ pitpq

αp

α1!α2! ¨ ¨ ¨αp!

(1.42)

The the coefficients B|α̃|fp0̃q
Bpit1qα1Bpit2qα2 ¨¨¨Bpitpq

αp denoted by κα1,α2¨¨¨ ,αp are called as the cumu-
lants of X̃.

1.8 Geometry of the Gaussian density
Consider a finite dimensional vector space V. Let B and C be two possible bases for the
vector space V. Let B “ tṽ1, ṽ2, ¨ ¨ ¨ , ṽnu and C “ tw̃1, w̃2, ¨ ¨ ¨ , w̃nu. Then there exists an
invertible matrix P such that

PrṽsB “ rṽsC (1.43)
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Note: rṽsB implies that the vector ṽ, with respect to the basis B, can be written as
ṽ “

řn
i“1 αiṽi.

rṽsB
ˆP
Õ
ˆP´1

rṽsC (1.44)

The result (1.43) is the main result we use to understand the geometry of the normal
distribution. We start with the simpler case of a circle and then move towards an ellipse.

1.8.1 n-dimensional sphere: A special case of an ellipse

Consider the 1-sphere S1 “ tx̃ P R2|x2
1 ` x2

2 “ r2u. Then, this equation can be written
as:

“

x1 x2

‰

„

1 0
0 1

 „

x1

x2



“ r2

Or more generally, if we consider an (n ´ 1)-dimensional sphere Sn´1 “ tx̃ P Rn|x2
1 `

x2
2 ¨ ¨ ¨ x

2
n “ r2u, then it can be written as

“

x1 x2 ¨ ¨ ¨ xn
‰

»

—

—

—

–

1 0 ¨ ¨ ¨ 0
0 1 ¨ ¨ ¨ 0
...

... ¨ ¨ ¨
...

0 0 ¨ ¨ ¨ 1

fi

ffi

ffi

ffi

fl

»

—

—

—

–

x1

x2
...
xn

fi

ffi

ffi

ffi

fl

“ r2 or in short, we can write it as x̃TI´1x̃ “ r2

(1.45)

Figure 1.1: A 1-sphere in R2 - special case of an ellipse

1.8.2 Un-rotated ellipse with center at (0,0)

Consider the following ellipse (also shown in Fig. 1.2) with its center at the origin.

x2
1

a2
`
x2

2

b2
“ 1 which can also be written as

“

x1 x2

‰

„

1
a2

0
0 1

b2

 „

x1

x2



or x̃Σ´1
x x̃ “ 1
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Figure 1.2: Unrotated ellipse with its center at the origin

In short, this equation can be written as x̃Σ´1
x x̃ “ 1 where x̃T “ px1, x2q and Σx “

„

a2 0
0 b2



.

More generally, an n-dimentional “un-rotated" ellipse would be

x2
1

α2
1

`
x2

2

α2
2

` ¨ ¨ ¨
x2
n

α2
n

“ 1, where αi ‰ 0 @i

This can also be written as follows:

“

x1 x2 ¨ ¨ ¨ xn
‰

»

—

—

—

—

–

1
α2
1

0 ¨ ¨ ¨ 0

0 1
α2
2
¨ ¨ ¨ 0

...
... ¨ ¨ ¨

...
0 0 ¨ ¨ ¨ 1

α2
n

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

–

x1

x2
...
xn

fi

ffi

ffi

ffi

fl

or x̃TΣ´1
x x̃

Here, Σx denotes the the matrix

»

—

—

—

–

α2
1 0 ¨ ¨ ¨ 0

0 α2
2 ¨ ¨ ¨ 0

...
... ¨ ¨ ¨

...
0 0 ¨ ¨ ¨ α2

n

fi

ffi

ffi

ffi

fl

1.8.3 Un-rotated ellipse with a translated center

Here, we consider an un-rotated ellipse with its centre at pc, dq ‰ p0, 0q. Since the centre
pc, dq is obtained through translations from the point p0, 0q, this ellipse will be called an
unrotated ellipse with translated origin. The two dimensional version of such an ellipse
will be:

px1 ´ c1q
2

a2
`
px2 ´ c2q

2

b2
“ 1

Its generalized version in the n-dimensional world will be:

px1 ´ c1q
2

α2
1

`
px2 ´ c2q

2

α2
2

` ¨ ¨ ¨
pxn ´ cnq

2

α2
n

“ 1 or px̃´ α̃qTΣ´1
x px̃´ α̃q

where the matrix Σx is given by

»

—

—

—

–

α2
1 0 ¨ ¨ ¨ 0

0 α2
2 ¨ ¨ ¨ 0

...
... ¨ ¨ ¨

...
0 0 ¨ ¨ ¨ α2

n

fi

ffi

ffi

ffi

fl

, αi ą 0 @i P t1, 2, ¨ ¨ ¨ , nu
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1.8.4 Rotated ellipse with centre at origin

Figure 1.3: Unrotated ellipse with its center at the origin

Consider a 2-dimensional ellipse in variables y1 and y2 which has its center at the
origin. Such an ellipse will be called a rotated ellipse if its major and minor axes are not
parallel to the directions py1 and py2 as shown in the figure. However, it is always possible
to obtain a new set of variables px1 and px2 such that Px̃ “ ỹ for some invertible matrix
P and the major and minor axes are parallel to the directions of px1 and px2 in the new
tranformed world involving variables x1 and x2.

Without loss of generality, let tpx1, px2u and tpy1, py2u be orthonormal bases for the space
R2. In such a scenario, P will be an orthogonal matrix. To begin with, we know that the
equation of the ellipse with respect to the new set of coordinates px1 and px2 is x̃TΣ´1

x x̃ “ 1
where x̃T “ px1, x2q and Σx is the diagonal matrix consisting of the squared values of the
major and minor axes lengths.

Now, this information can easily be generalized to the n-dimensional case. In the
n-dimensional space, we have the following information

ellipse equation w.r.t tpx1, px1u : x̃Σ´1
x x̃ “ 1 such that Px̃ “ ỹ

Therefore,

x̃Σ´1
x x̃ “ ỹTPΣ´1

x PT ỹ “ 1 (1.46)

From (1.46), it follows the the original rotated ellipse has the equation ỹTΣyỹ “ 1 where
Σy “ PΣxP

T .

1.8.5 Rotated and translated ellipse

Using the ideas and methods we used so far, it is easy to show that the equation of a
rotated and translated ellipse is given by

pỹ ´ α̃qTΣ´1
y pỹ ´ α̃q “ 1

Here, α̃ is the centre of the n-dimensional ellipse and Σy “ PΣ´1
x P where Σx corre-

sponds to the equation of an un-rotated ellipse with centre at α̃.
Using the observations made so far, it is easy to conclude that the locus of all points

x̃ such that npx̃| µ̃,Σq “ c0 for some constant c0 P R.
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Chapter 2

Estimation of mean and covariance
matrix

The references for this chapter is [And03].

We know that the multivariate normal distribution is completely known if the pa-
rameters µ̃ and Σ are given to us. However, it is not always possible to know the mean
vector or the covariance matrix. In such a scenario, we can try to estimate the mean and
covariance of a random vector using a sample of observations we have. In this chapter, we
discuss about the maximum likelihood estimators for the mean and covariance matrix of
a random vector X̃, inference concerning the mean when the covariance matrix is known
and the James-Stein estimator.

2.1 Maximum Likelihood estimation
Through out the section, we assume that we have N samples of observations on the
random vector X̃ „ N pµ̃,Σq. Let these observations be labelled as x̃1, x̃2, ¨ ¨ ¨ , x̃N where
N ą p. Then the likelihood function is given by:

Lpµ̃,Σ|x̃1, ¨ ¨ ¨ , x̃Nq “
N
ź

α“1

npx̃α| µ̃,Σq

Note that, in a likelihood equation, the vectors x̃α for all α P t1, 2, ¨ ¨ ¨ , Nu are fixed or
known. However, µ̃ and Σ are unknowns in the likelihood equation. In order to highlight
the fact that µ̃ and Σ are variables (NOT parameters), we use the symbols µ̃˚ and Σ˚

instead of µ̃ and Σ. With this notation in mind, the log likelihood of the multivariate
normal random vector is given by:

lnL “ ´1

2
pN ln p2πq ´

1

2
N ln pdetΣ˚q ´

1

2

N
ÿ

α“1

px̃α ´ µ̃
˚
q
T
pΣ˚q´1

px̃α ´ µ̃
˚
q (2.1)

We wish to find µ̃˚ and pΣ˚q´1 such that the log likelihood (and hence the likelihood)
function is maximized.

The following notations will be used in this section for the sake of convenience.
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1. The sample mean vector, denoted by ~x, is defined as follows:

x̄ “
1

N

N
ÿ

α“1

x̃α “

»

—

—

—

–

1
N

řN
α“1 x1α

1
N

řN
α“1 x2α
...

1
N

řN
α“1 xpα

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

x̄1

x̄2
...
x̄p

fi

ffi

ffi

ffi

fl

where x̃α “

»

—

—

—

–

xα1

xα2
...
xαp

fi

ffi

ffi

ffi

fl

for all α P t1, 2, ¨ ¨ ¨ , Nu

(2.2)

2. Define a matrix A as given below. This will be useful in defining the sample
covariance matrix.

A “

N
ÿ

α“1

px̃α ´ x̄qpx̃α ´ x̄q
T

It is easy to show that the aboce equation can be simplified to give

A “

N
ÿ

α“1

px̃α ´ x̄qpx̃α ´ x̄q
T
“

N
ÿ

α“1

x̃αx̃
T
α ´Nx̄x̄

T

Our aim is to prove the following theorem:

Theorem 2.1. If x̃1, x̃2 ¨ ¨ ¨ , x̃N are p ˆ 1 vectors sampled from a normal distribution
with mean µ̃ and covariance Σ such that p ă N . Then the maximum likelihood estimator
of µ̃ and Σ, denoted by pµ and pΣ, are:

pµ “ x̄ “
1

N

N
ÿ

α“1

x̃α and pΣ “
A

N
“

1

N

N
ÿ

α“1

px̃α ´ x̄qpx̃α ´ x̄q
T (2.3)

This theorem easily follows from the two lemmas that will be proved now.

Lemma 2.1. Let x̃1, x̃2, ¨ ¨ ¨ , x̃N be N pˆ1 vectors. x̄ denotes the mean vector as defined
in (2.2). Then, for any vector b̃, we have the following:

N
ÿ

α“1

px̃α ´ b̃qpx̃α ´ b̃q
T
“

N
ÿ

α“1

px̃α ´ x̄qpx̃α ´ x̄q
T
`Npx̄´ b̃qpx̄´ b̃qT (2.4)

Proof. The Lemma can be proved by re-writing and then later simplifying the left hand
side of the equation 2.4 as follows:

N
ÿ

α“1

px̃α ´ b̃qpx̃α ´ b̃q
T
“

N
ÿ

α“1

rpx̃α ´ x̄q ` px̄´ b̃qsrpx̃α ´ x̄q ` px̄´ b̃qs
T

From the lemma just proved, the following result follows directly:

N
ÿ

α“1

px̃α ´ µ̃qpx̃α ´ µ̃q
T
“

N
ÿ

α“1

px̃α ´ x̄qpx̃α ´ x̄q
T
`Npx̄´ µ̃qpx̄´ µ̃qT
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The log likelihood function has been mentioned again for the sake of convenience.

lnL “ ´1

2
pN ln p2πq ´

1

2
N ln pdetΣ˚q ´

1

2

N
ÿ

α“1

px̃α ´ µ̃
˚
q
T
pΣ˚q´1

px̃α ´ µ̃
˚
q (2.5)

We now simplify the term
řN
α“1px̃α´µ̃

˚qT pΣ˚q´1px̃α´µ̃
˚q present in the log likelihood

function.

N
ÿ

α“1

px̃α ´ µ̃
˚
q
T
pΣ˚q´1

px̃α ´ µ̃
˚
q “ trace

!

N
ÿ

α“1

px̃α ´ µ̃
˚
q
T
pΣ˚q´1

px̃α ´ µ̃
˚
q

)

“

N
ÿ

α“1

trace
!

px̃α ´ µ̃
˚
q
T
pΣ˚q´1

px̃α ´ µ̃
˚
q

)

“

N
ÿ

α“1

trace
!

pΣ˚q´1
px̃α ´ µ̃

˚
q
T
px̃α ´ µ̃

˚
q

)

“ trace
!

N
ÿ

α“1

pΣ˚q´1
px̃α ´ µ̃

˚
q
T
px̃α ´ µ̃

˚
q

)

“ trace
!

Σ´1
rA`Npx̄´ µ̃qpx̄´ µ̃qT s

)

“ tracepΣ´1Aq ` trace
!

Npx̄´ µ̃qTΣ´1
px̄´ µ̃q

)

“ tracepΣ´1Aq `Npx̄´ µ̃qTΣ´1
px̄´ µ̃q

(2.6)

Using the simplification in 2.6, we can re-write the log likelihood function as:

lnL “ ´pn
2

ln 2π ´
n

2
ln detpΣq ´

1

2
trpΣ´1Aq ´

N

2
px̄´ µ̃qTΣ´1

px̄´ µ̃q (2.7)

Note that maximizing the function lnL is same as that of minimizing the function ´ lnL.
Now, it is clear that minimizing ´ lnL with respect to µ̃ is the same as minimizing the
term px̄ ´ µ̃qTΣ´1px̄ ´ µ̃q. Since, Σ´1 is a positive definite matrix, we know that the
expression ´ lnL will be minimized at µ̃ “ x̄ . This proves the claim that the sample
mean vector defined earlier is actually the maximum likelihood estimator for mean µ̃.

Now the next step will be to find a positive definite matrix Σ such that ´ lnL is
minimized.

lnL “ ´pn
2

ln 2π ´
n

2
ln detpΣq ´

1

2
trpΣ´1Aq ´

N

2
px̄´ µ̃qTΣ´1

px̄´ µ̃q

ď ´
pn

2
ln 2π ´

n

2
ln detpΣq ´

1

2
trpΣ´1Aq

(2.8)

From 2.8, it is clear that our job now is to maximize n
2

ln detpΣq ` 1
2
trpΣ´1Aq. This

maximization problem is solved through a lemma given below:

Lemma 2.2. Let D be a positive definite matrix of size p ˆ p. Then the maximum of
fpGq “ N ln detpGq`tracepG´1Dq with respect to the positive definite matrices G exists,
and occurs at G “ 1

N
D and has value fp 1

N
Dq = pN lnN ´N lntdetDu ´ pN .
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Proof. Since D is a positive definite matrix, there exists invertible lower traingular matrix
E such that D “ EET . Define the matrix H as H “ ETG´1E. Then, it is easy to see
that G “ EH´1ET .

G “ EH´1ET
ùñ detpGq “

detpDq

detpHq

Now, the following simplification can be made:

tracepG´1Dq “ tracepG´1EET
q “ tracepETG´1Eq “ tracepHq (2.9)

The function we wish to maximize is a function of the positive definite matrix G. However,
using (2.9) in fpGq, we can rewrite it as a function of H:

fpGq “ f̃pHq “ N ln pdetDq ´N ln pdetHq ´ tracepHq (2.10)

So we changed the problem of maximizing w.r.t G into a problem of maximizing w.r.t.
H. G is a positive definite matrix and therefore G´1 is positive definite as well. Hence,
pEx̃qTG´1pEx̃q ą 0 unless Ex̃ “ 0. Invertibility of E implies that x̃THx̃ “ 0 iff x̃ “ 0̃.
This proves that H is a positive definite matrix. Hence, (2.10) has to be maximized with
respect to the positive definite matrix H.

H is a positive definite matrix ùñ H “ TTT for some lower triangular matrix T

Therefore,

f̃pHq “ ´N ln pdetDq `N ln pdetHq ´ tracepHq

“ ´N ln pdetDq `N lntpdetHq2u ´ tracepTTT
q

(2.11)

Let the elements of the lower triangle matrix T be denoted by tij. Since, T is lower
triangular tij “ 0 for all j ą i. Using this notation, f̃pHq can be re-written as follows:

f̃pHq “ ´N ln pdetDq `N
p
ÿ

i“1

ln ptiiq
2
´

p
ÿ

i“1

t2ii ´
ÿ

iąj

t2ij (2.12)

Then, the maximum of f̃ occurs at t2ii “ N and tij “ 0 for all i ‰ j. In other words, this
happens when H “ NI. This implies that G “ 1

N
D.

Therefore, we have proved the Theorem 2.1.

Theorem 2.2. The theorem will consist of two parts. The first part of the theorem given
below implies the second result which is the result of our interest.

1. f : S ÝÑ R is a function while φ : S ÝÑ S˚ is a bijective function. Define a
function g : S˚ ÝÑ R as follows:

for θ˚ P S˚, gpθ˚q “ f rφ´1
pθ˚qs

Then,

• If fpθq attains a maximum at θ “ θ0, then gpθ˚q attains a maximum at θ˚ “
φpθ0q.
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• If fpθq attains a unique maximum at θ “ θ0, then gpθ˚q attains a unique
maximum at θ˚ “ φpθ0q.

2. Let θ1, θ2, ¨ ¨ ¨ , θm be the parameters associated with a distribution. Based on a
given sample, the maximum likelihood estimators ()MLEs were calculated. Let these
estimators be denoted by θ̂1, θ̂2, ¨ ¨ ¨ , θ̂m. Then ψ1pθ̂1, θ̂2 , ¨ ¨ ¨ , θ̂mq, ψ2pθ̂1, θ̂2, ¨ ¨ ¨ ,
θ̂mq, ¨ ¨ ¨ , ψmpθ̂1, θ̂2, ¨ ¨ ¨ , θ̂mq are the MLEs of ψ1pθ1, θ2, ¨ ¨ ¨ , θmq, ψ2pθ1, θ2, ¨ ¨ ¨ , θmq,
¨ ¨ ¨ , ψmpθ1, θ2, ¨ ¨ ¨ , θmq if the transformations from θi ÝÑ ψipθiq are all one-one.

Theorem 2.3. We just prove the first part of the theorem. The second part of the theorem
can be proved easily using the first result.

Proof. It is given that fpθ0q ě fpθq for all θ P S. Let θ˚ P S˚, then gpθ˚q “ fpθ1q for
some θ1 P S. Therefore,

gpθ˚q “ f rφ´1
pθ˚qs “ fpθ1q ď fpθ0q “ grφpθ0qs for all θ˚ P S˚

Now assume that f attains a unique maximum at θ0. Then,

gpθ˚q “ f rφ´1
pθ˚qs “ fpθ1q ă fpθ0q “ grφpθ0qs

Therefore, its a unique maximum.

2.2 Distribution of the sample mean vector and covari-
ance matrix

The theorem we proved in the previous section has been restated below for the sake of
convinience.

Theorem 2.4. If x̃1, x̃2 ¨ ¨ ¨ , x̃N are p ˆ 1 vectors sampled from a normal distribution
with mean µ̃ and covariance Σ such that p ă N . Then the maximum likelihood estimator
of µ̃ and Σ, denoted by pµ and pΣ, are:

pµ “ x̄ “
1

N

N
ÿ

α“1

x̃α and pΣ “
A

N
“

1

N

N
ÿ

α“1

px̃α ´ x̄qpx̃α ´ x̄q
T (2.13)

This section will consist of two parts. In the first part, we show that the sample mean
is normally distributed with mean µ̃ and covariance 1

N
Σ. The covariance matrix is then

proved to follow a distribution called the "Wishart distribution".

2.2.1 Distribution of the sample mean

The theorem we wish to prove is given below. This theorem will be proved in parts for
the sake of convenience.

Theorem 2.5. Let X̃1, X̃2, ¨ ¨ ¨ , X̃N be sampled from N pµ̃,Σq. Then, the sample mean
X̄ is distributed according N pµ̃, 1

N
Σq and independently of pΣ, the MLE of Σ. In addition

to this, N pΣ is distributed as
řN´1
α“1 Z̃αZ̃

T
α where Z̃α „ N p0̃,Σq for all α “ 1, 2, ¨ ¨ ¨ , N ´ 1

The theorem 2.5 follows very easily from the two lemmas that will be proved in this
subsection.
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Lemma 2.3. X̃1, X̃2, ¨ ¨ ¨ , X̃N are independent random variables such that X̃i „ N pµ̃i,Σq.
Let C “ pcijq be an N ˆN orthogonal matrix. Then, Ỹi “

řN
j“1 cijX̃j „ N pν̃i,Σq where

ν̃i “
řN
j“1 cijµ̃j for all i P t1, 2, ¨ ¨ ¨ , Nu. In addition to this, Ỹ1, Ỹ2, ¨ ¨ ¨ , ỸN are mutually

independent random vectors.

Proof. First of all, observe that any linear combination of Ỹi’s is nothing but a linear com-
bination of X̃i’s. Since each X̃i is normally distributed, it is true that every linear com-
bination of Ỹi’s is also normally distributed. This implies that the vector Ỹ1, Ỹ2, ¨ ¨ ¨ , ỸN
is also normally distributed. Then,

ErỸis “
N
ÿ

j“1

cijErX̃js “

N
ÿ

j“1

cijµ̃j “ ν̃i for all i P t1, 2, ¨ ¨ ¨ , Nu

Now we are left to show the mutual independence and variance of Ỹi for each possible i.
This is proved by showing that covpỸi, Ỹjq “ 0 for all i ‰ j.

covpỸi, Ỹjq “ E
”

p

N
ÿ

k“1

cikX̃k ´

N
ÿ

k“1

cikµ̃kqp
N
ÿ

t“1

cjtX̃t ´

N
ÿ

t“1

cjtµ̃tq
T
ı

“

N
ÿ

k“1

N
ÿ

t“1

cikcjtcovpX̃k, X̃tq

(2.14)

Since covpX̃i, X̃jq “ 0 for i ‰ j due to the independence condition, we can rewrite (2.14)
as follows:

covpỸi, Ỹjq “
N
ÿ

k“1

N
ÿ

t“1

cikcjtδ “

#

0 if k ‰ t

Σ when k “ t

We can show that covpỸi, Ỹjq “ δijΣ as C is an orthogonal matrix. This proves that the
Ỹi’s are mutually independent and that the variance of X̄ is Σ.

Lemma 2.4. Let C be an orthogonal matrix whose pi, jqth entry is denoted by cij. Then
the following holds true:

N
ÿ

α“1

x̃αx̃
T
α “

N
ÿ

α“1

ỹαỹ
T
α where ỹα “

N
ÿ

β“1

cαβx̃β

Proof.
N
ÿ

α“1

ỹαỹ
T
α “

N
ÿ

α“1

!´

N
ÿ

β“1

cαβx̃β

¯´

N
ÿ

β“1

cαβx̃
T
β

¯)

“

N
ÿ

α“1

!

N
ÿ

k“1

N
ÿ

t“1

cαkcαtx̃kx̃
T
t

)

“

N
ÿ

k“1

N
ÿ

t“1

´

N
ÿ

α“1

cαkcαt

¯

x̃kx̃
T
t (since summation is finite)

“

N
ÿ

k“1

N
ÿ

t“1

δktx̃kx̃
T
t

“

N
ÿ

α“1

x̃αx̃
T
α
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Lemma 2.5. Let X̃1, X̃2, ¨ ¨ ¨ , X̃N be sampled from N pµ̃,Σq. Then the sample mean pµ

and pΣ are independently distributed.

Proof. Consider the N ˆ 1 vector p 1?
N
, 1?

N
, ¨ ¨ ¨ , 1?

N
qT P RN . Since every linearly inde-

pendent set can be extended to form a basis set, we can add extra vectors b̃1, ¨ ¨ ¨ , b̃N´1

to p 1?
N
, 1?

N
, ¨ ¨ ¨ , 1?

N
qT such that all these N vectors together form an orthonormal basis

for RN . Let these N orthonormal basis vectors, as row vectors, be clubbed together to
give the orthogonal matrix B, with its pi, jqth element denoted by dij. Define a vector Z̃α
as follows:

Z̃α “
N
ÿ

β“1

bαβX̃β @α P t1, 2, ¨ ¨ ¨ , Nu

From the construction of the matrix B, Z̃N “
?
NX̄. As defined earlier, let A “

řN
α“1 X̃αX̃

T
α ´NX̄X̄

T . Using Lemma 2.4, we know that:

A “

N
ÿ

α“1

X̃αX̃
T
α ´NX̄X̄

T
“

N
ÿ

α“1

Z̃αZ̃
T
α ´ Z̃N Z̃

T
N “

N´1
ÿ

α“1

Z̃αZ̃
T
α

Now, pZ̃1, ¨ ¨ ¨ , Z̃n´1q are independent random vectors. This implies:

Z̃n K pZ̃1, Z̃2, ¨ ¨ ¨ , Z̃n´1q

We will now use the fact that if X̃ and Ỹ are independent random vectors, then the
random vectors fpX̃q and gpỸ q are also independent for borel measurable functions f, g :
Rn´1 ÝÑ Rp2 . Taking fpZ̃q “ 1?

N
Z̃ and gpZ̃1, Z̃2, ¨ ¨ ¨ , Z̃n´1q “

1?
N

řN´1
α“1 Z̃αZ̃

T
α , we can

prove that X̄ K pµ

Lemma 2.6. Let X̄ be the sample mean vector of a sample of N observations drawn
from N pµ̃,Σq. Then X̄ has mean µ̃ variance 1

N
Σ

Proof. The vectors Z̃i’s in this proof are as defined in the earlier theorem. The, we
know that Z̃n “

řN
β“1

1?
N
X̃β. Then, clearly ErZ̃N s “

?
Nµ̃. Additionally, since Z̃N “

řN
β“1

1?
N
X̃β, we can use Lemma 2.4, to show that VrZ̃N s “ Σ. Therefore,

Z̃N „ N p
?
Nµ̃,Σq (2.15)

We showed in the Lemma 2.4 that X̄ “ 1?
NZ̃N

. From (2.15), it follows that ErX̄s “ µ̃.

VrX̄s “ E
”´ Z̃N
?
N
´ µ̃

¯´ Z̃N
?
N
´ µ̃

¯Tı

“
1

N
ErZ̃N Z̃T

N s ´ µ̃µ̃
T (2.16)

Now, using VrZ̃N s “ ErZ̃N Z̃T
N s ´Nµ̃µ̃

T , we can show that:

ErZ̃N Z̃T
N s “ Σ`Nµ̃µ̃T (2.17)

From (2.16) and (2.17) it can be shown that VrX̄s “ 1
N

Σ. Hence X̄ „ N pµ̃, 1
N

Σq

Remark 2.1. A few useful observatios/results have been noted below:

1. X̄ is an unbiased estimator of µ̃.

2. pΣ is not an unbiased estimator for Σ. In fact, it can be shown that ErpΣs “ N´1
N

Σ.
Therefore, N

N´1
pΣdenoted by S is an unbiased estimator for Σ. From now onwards,

S is called as the sample covariance matrix.

3. Note that A
N

is the MLE for Σ while N
N´1

A is the unbiased estimator of Σ.
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2.2.2 Distribution of the covariance matrix

We earlier showed that the sample covariance matrix S “ 1
N

řN
α“1px̃α´ x̄qpx̃α´ x̄q

T is an
unbiased estimator for Σ. The distribution of A “ px̃α ´ x̄qpx̃α ´ x̄qT is often called the
Wishart distribution.

Before moving ahead with the proof, it is important to recall the Gram-Schmidt
process.
Gram-Schmidt process
Let tx̃1, x̃2, ¨ ¨ ¨ , x̃pu be a given basis W of Rn. Define a new set of vectors ṽ1, ṽ2, ¨ ¨ ¨ , ṽp
as follows:

ṽ1 “ x̃1

ṽ2 “ x̃2 ´
xx̃2, ṽ1y
a

xṽ1, ṽ1y
ṽ1

ṽ3 “ x̃3 ´
xx̃3, ṽ1y
a

xṽ1, ṽ1y
ṽ1 ´

xx̃3, ṽ2y
a

xṽ2, ṽ2y
ṽ2

...

ṽp “ x̃p ´
xx̃p, ṽ1y
a

xṽ1, ṽ1y
ṽ1 ´ ¨ ¨ ¨

xx̃p, ṽp´1y
a

xṽp´1, ṽp´1y
ṽp´1

Then tṽ1, ṽ2, ¨ ¨ ¨ , ṽpu form an orthogonal basis for W .

Theorem 2.6. Let X̃1, X̃2, ¨ ¨ ¨ , X̃N be pˆ1 independent random vectors following N pµ̃,Σq.
The, the density of A for A positive definite is given by:

pdetAq
1
2
pn´p´1q exp

!

´ 1
2
trpΣ´1Aq

)

2
np
2 π

ppp´1q
4 pdetΣq

n
2

śp
i“1 Γr1

2
pn` 1´ iqs

(2.18)

Proof. Let us first start with the special case Σ “ Ip. Consider the matrix Z to be the
matrix formed by clubbing together the vectors Z̃i’s pi P t1, 2, ¨ ¨ ¨ , Nuq that we defined
earlier in Lemma (2.5).

Z “ pZ̃1, Z̃2, ¨ ¨ ¨ , Z̃Nq “

»

—

—

—

–

ṽT1
ṽT2
...
ṽTp

fi

ffi

ffi

ffi

fl

i.e. ṽTi denotes ith row of Z. (2.19)

Since, X̃1, ¨ ¨ ¨ , X̃N are independent vectors, it is clear by the definition of Z̃α that VrZ̃αs “
Σ for all α P t1, 2, ¨ ¨ ¨ , Nu. The expected value of Z̃α can be found out as follows:

ErZ̃αs “
N
ÿ

β“1

bαβErX̃βs

“

N
ÿ

β“1

bαβµ̃

“

N
ÿ

β“1

bαβbNβ
?
Nµ̃ where bNβ “

1
?
N
@β P t1, ¨ ¨ ¨ , Nu

“ 0

(2.20)
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Therefore, Z̃α „ N p0̃,Σq for all α. Since we are in the special case 0f Σ “ Ip, we
know that each component of Z̃α, which we denote by zpαqi is a N p0, 1q random variable.
This means that each component of ṽTα , which we will denote by vpαqi , is also normally
distributed. Σ “ Ip also implies that the components of vectors ṽTα are all independent.
Hence each ṽTα „ N p0̃, INq.

Now, we use the Gram-Schmidt process that we earlier recalled. We apply the
Gram-Schmidt process on vectors tṽ1, ¨ ¨ ¨ , ṽpu to produce an orthogonal basis set W “

tw̃1, ¨ ¨ ¨ , w̃pu such that:

w̃i “ ṽi ´

i´1
ÿ

j“1

w̃Tj ṽi
b

w̃Tj w̃j
w̃j such that xw̃i, w̃jy “ 0 @i ‰ j (2.21)

Define tii and tij as follows:

tii “ xw̃i, w̃iy
1
2 @i P t1, ¨ ¨ ¨ , pu and tij “

ṽTi w̃j
a

xw̃i, w̃iy
for pi, jq P t1, ¨ ¨ ¨ , i´ 1u ˆ t2, ¨ ¨ ¨ , pu

(2.22)

Using the notation in (2.22) in equation (2.21), we can show that:

ṽi “

i
ÿ

j“1

tij

xw̃j, w̃jy
1
2

w̃j (2.23)

Since A and
řN´1
i“1 Z̃iZ̃

T
i , where Z̃i „ N p0̃,Σq , have the same distributions it can be

easily shown that the ph, iqth element of A, denoted by ahi, is given by

ahi “
N´1
ÿ

α“1

z
pαq
h z

pαq
i “

N´1
ÿ

α“1

vphqα vpiqα “ ṽTh ṽi

(2.23), along with the fact that xw̃i, w̃jy “ 0 for i ‰ j can be used to simplify ahi further.

ahi “ ṽTh ṽi “

« h
ÿ

j“1

thj

xw̃j, w̃jy
1
2

w̃j

ffT« i
ÿ

j“1

tij

xw̃j, w̃jy
1
2

w̃j

ff

“

minth,iu
ÿ

j“1

thjtij (2.24)

Now, define a new matrix T whose entries are tij that we defined earlier. Since, we
earlier defined tij only for j ă i, we set tij “ 0 when i ă j. Therefore, T is a lower
triangular matrix. From (2.24), it is clear that A “ TTT .

Let ṽi “
i´1
ÿ

j“1

γjw̃j then, γj “ tij for all j P t1, 2, ¨ ¨ ¨ , i´ 1u (2.25)

The magnitude of the vector ṽi will be the same irrespective of the choice of basis. Then,

xṽi, ṽiy “
i
ÿ

j“1

t2ij
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This implies that the sum of the remaining n ´ pi ´ 1q co-ordinate coefficients of ṽi is
xṽi, ṽjy ´

ři´1
j“1 t

2
ij “ t2ii “ xw̃i, w̃jy.

Claim: t2ii „ χ2
n´i`1 and tij „ N p0, 1q for i ą j

t2ii “ w̃Ti w̃i “ rV
piq
i s

2`¨ ¨ ¨`rV
piq
n s

2. Since each component of Ṽ T
i “ pV

piq
1 , V

piq
2 , ¨ ¨ ¨ , V

piq
n q is a

N p0, 1q random variable. This clearly implies that t2ii follows the chi-squared distribution
with n´pi´1q degrees of freedom. Using Lemma 2.3, it can be proved that tij „ N p0, 1q
for i ą j and that the random variables t11, t22, ¨ ¨ ¨ , tpp is independently distributed.

Since t11, t22, ¨ ¨ ¨ , tpp are all independently distributed, it can be shown that the joint
density of all tij for pi, jq P t1, ¨ ¨ ¨ , iu ˆ t1, 2, ¨ ¨ ¨ , pu is:

fpt11, t12, ¨ ¨ ¨ , tppq “
ź

iąj

”

p
ź

j“1

nptij| expt´
t2ij
2
uq ˆ

p
ź

i“1

χ2
n´i`1ptiiq

ı

(2.26)

The joint density in (2.26), can be simplified to give

fpt11, ¨ ¨ ¨ , tppq “ exp
!

´
1

2

p
ÿ

i“1

i
ÿ

j“1

t2ij

)

ˆ

!

p
ź

i“1

tn´iii

Γpn´i`1
2
q

)

ˆ
1

π
ppp´1q

4

ˆ
1

2
ppn´2q

2

(2.27)

Σ is a symmetric positive definite matrix, then by cholesky decomposition of Σ, there
exists a lower triangular matrix C such that Σ “ CCT . Now, consider the linear trans-
formation T˚ “ CT. Then,

t˚ij “

#

ři
k“1 ciktkj for i ě j

0 for i ă j

This, in matrix form, wil be written as:
»

—

—

—

—

—

—

—

—

—

–

t˚11

t˚21

t˚22
...
t˚p1
...
t˚pp

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

–

c11 0 0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0
˚ c22 0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0
˚ ˚ c22 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0
...

...
... . . . ... . . . ...

˚ ˚ ˚ ¨ ¨ ¨ cpp ¨ ¨ ¨ 0
...

...
... . . . ... . . . ...

˚ ˚ ˚ ¨ ¨ ¨ ˚ ¨ ¨ ¨ cpp

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

–

t11

t21

t22
...
tp1
...
tpp

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(2.28)

It is easy to check that the Jacobian of the transformation from T to T˚ mentioned in
(2.28) is 1

śp
i“1 c

i
ii
. Note that the matrix T and T˚ are sometimes considered as column

vectors as shown in (2.28) even though the notation used for the matrix and vector form
is the same.

Now, the density of T˚ can be found out by substituting tii “
t˚ii
cii

in (2.26). In addition
to that, the term

řp
i“1

ři
j“1 t

2
ij in (2.27) can be simplified as:

p
ÿ

i“1

i
ÿ

j“1

t2ij “ tracepTTT
q

“ tracerC´1T˚
tT˚

u
T
tC´1

u
T
s

“ tracerT˚
tT˚

u
TC´1

tC´1
u
T
s

“ tracertT˚
u
TΣ´1T˚

s since Σ “ CC˚
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The density of T˚ can be calculated to be

f̃T˚pt
˚
11, t

˚
21, ¨ ¨ ¨ , t

˚
ppq “ exp

!

´
1

2

p
ÿ

i“1

i
ÿ

j“1

t2ij

)

ˆ

!

p
ź

i“1

tt˚iiu
n´1

Γpn´i`1
2
q

)

ˆ
detpΣq´

n
2

π
ppp´1q

4

ˆ
1

2
ppn´2q

2

Using (2.24), it can be shown that ahi “
ři
j“1 t

˚
hjt

˚
ij for h ě i. Then

Bahi
Bt˚kl

“

#

0 if k ą h

0 if k “ h, l ą i

Bahh
Bt˚hh

“ 2t˚hh
ahi
t˚hi
“ t˚ii if h ą i (2.29)

Using (2.29), it can be shown that the Jacobian of the transformation from T˚ to A is
2´p ˆ 1

śp
i“1pt

˚
iiq
p`1´i .

USing this, our theorem of interest, i.e. Theorem 2.6, can be proved. In other words,
we can show that the density of A “

řN´1
α“1 Z̃αZ̃

T
α , where each Z̃α follows N p0̃,Σq, is as

follows:

pdetAq
1
2
pn´p´1q exp

!

´ 1
2
trpΣ´1Aq

)

2
np
2 π

ppp´1q
4 pdetΣq

n
2

śp
i“1 Γr1

2
pn` 1´ iqs

(2.30)

The following two corollaries follow easily from the theorem we just proved.

Corollary 2.1. Let X̃1, X̃2, ¨ ¨ ¨ , X̃N be independently distributed according to N pµ̃,Σq.
Then the density of A “

řN´1
α“1 pX̃α ´ X̄qpX̃α ´ X̄q

T is given by (2.30).

Remark 2.2. The distribution in (2.30) is called the Wishart distribution. It is
denoted by WpΣ, N ´ 1q

Corollary 2.2. Let X̃1, X̃2, ¨ ¨ ¨ , X̃N be independently distributed, each according to
N pµ̃,Σq. Then the sample covariance matrix S follows the distribution Wp 1

N´1
Σ, N ´1q.

Proof. Using the Corollary (2.1), we can show that S has the same distribution as that
of

řN´1
α“1 r

1?
N´1

Z̃αsr
1?
N´1

Z̃αs
T where 1?

N´1
Z̃1, ¨ ¨ ¨ , 1?

N´1
Z̃N are independently distributed

according to N p0̃, 1
N´1

Σq. Then, (2.30) implies this corollary.
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Chapter 3

Principal component analysis

The following chapter is based on [Ize08], [Koc14], [Shl14], [Gho15] and [Bur10] and
[Lee14]. The dataset has been taken from [DG17]

Principal component analysis(PCA) is a standard technique used in the data analysis
of complex and confusing data sets in the hope of uncovering hidden patterns and struc-
tures in the data. PCA is a“ dimension reduction techniques” ,or in other words, a
technique that reduces the number of variables involved in the experiment without the
loss of “important information”. This has been explained further in the paragraph that
follows.
Dimension reduction
Dimension reduction is mapping data to a lower dimensional space such that the “impor-
tant information” regarding the data is retained or a subspace is identified such that the
data points live in this subspace. Note that the word “dimension” indicates the number
of variables in the data set. The variables involved may or may not be correlated. Addi-
tionally, these variables are also sometimes referred to as attributes or features. PCA is
one of the many different dimension reduction techniques that have been proposed.

Any dimension reduction technique falls under one of the two following categories:

1. Methods that rely on projections

2. Methods that attempt to model the manifold on which the data lies.

The focus of this chapter will be Principal component analysis, which is a dimension
reduction technique that relies on projections. Since dimension reduction aims to preserve
“important information”, it is important to ask the question, “How is the term important
defined?”. Important information for PCA is the variation present in the data. Details
of the PCA procedure, which will be mentioned later in this chapter, imply that PCA
assumes that “useful” or interesting information is only present in the regions of high
variance. In conclusion, PCA reduces the dimension of the data while retaining as much
as possible about the variation present in the data.

How is the dimension reduced? - Brief Outline

Let us consider the Wisconsin Diagnostic Breast Cancer (WDBC) data to understand the
purpose of PCA. WDBC is a data frame of size 569ˆ 32. In other words, the data frame
consists of 569 observations taken on 32 variables. A few of the rows, which correspond to
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observations, and columns, corresponding to variables, for the WDBC dataset are given
below.

Figure 3.1: Wisconsin Diagnostic Breast
Cancer (WDBC) data.

In the Figure 3.1, the numbers highlighted in green indicate the serial number while
the characters highlighted in red are the variables. First column mentions the ID of a
patient from whom each of the 31 variable values are being noted. The second variable
is a binary variable. It can only take the values “B” and “M” which stand for benign and
malignant respectively.

It is clear from the breast cancer data set that the number of variables involved is
large and therefore complicates the calculations while using the existing data to predict
a given variable of interest. Therefore, reducing the number of variables involved would
be of great use in such instances. PCA, when applied to this data, utilizes the original
30 variables to construct a much smaller set of variables called “principal component
scores” denoted by PC1, PC2, ¨ ¨ ¨ , PCi ¨ ¨ ¨ . Often, the term principal component vari-
ables is used to describe these newly constructed set of variables. It will be shown later
that only, in this example, 7 principal component variables are enough to retain “most of
the important information” in the data. In other words, seven principal component vari-
ables explain at least 90% of the total variation present in this data. Thus, PCA allows
us to convinently work with these 7 new (or principal component) variables instead of
the 30 old variables.

Remark 3.1. Note that each of the new variables, denoted by PCi for i P t1, ¨ ¨ ¨ du, must
be linear combinations of the original set of variables. Although this appears to
be like a strict restriction on the kind of new variables that we can define, it definitely
gives the advantage of exploiting all the nice properties of linear combinations of random
variables. In fact, this restriction allows us to use change the problem of finding the new
set of variables into the problem of finding a new basis set to re-express the data.

Firstly, all the definitions and notations are mentioned without motivation in the
section that follows. However, the meaning behind these definitions will be clear by the
end of the chapter.

3.1 Notations
Let us consider a d ˆ 1 random vector X̃ which follows a distribution with mean µ̃ and
covariance matrix Σ. From now onwards, this information will be conveyed using the
notation

X̃ „ pµ̃,Σq
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Each of the p components of this vector correspond to a variable or feature that we can
measure. Assume that the vector X̃ is a continuous real valued random variable with the
spectral decomposition of the covariance matrix given by

Σ “ ΓΛΓT (3.1)

Here, Γ “ rη̃1, ¨ ¨ ¨ , η̃ds is an orthogonal matrix whose columns consist of the eigen vectors
of the matrix Σ. Λ “ diagpλ1, λ2, ¨ ¨ ¨ , λdq is the diagonal matrix made up of the eigen
values of Σ.

We will assume Σ to be a d ˆ d full rank matrix with distinct eigen values unless
otherwise stated. However, if Σ is a rank deficient matrix of rank r ă d, then the
decomposition of Σ is given by:

Σ “ ΓrΛrΓ
T
r (3.2)

Note that Γr is the d ˆ q matrix r η̃1 η̃2 ¨ ¨ ¨ η̃r s while Λr is the square matrix
diagpλ1, λ2, ¨ ¨ ¨ , λrq of size r ˆ r. Observe that the matrix Γ in (3.1) is an orthogo-
nal matrix while the matrix Γr in (3.2) is a rectangular matrix which is not orthogonal.
However, the matrix Γr is r-orthogonal i.e. it follows the following property

ΓTr Γr “ Ir and ΓrΓ
T
r ‰ Ir

In addition to that, the following properties of Γk are also worth mentioning.

ΓTr Γ “ Ikˆd and ΓTΓk “ Idˆk (3.3)

Definitions of certain terms are introduced without mentioning the motivation behind
the definitions. However, those motivations will become clear by the time the chapter is
completed.

3.2 Population and Sample Principal Components

Population principal components

For all the definitions given below, the rank of Σ is assumed to be r ď d. Let k P
t1, ¨ ¨ ¨ , ru. The notations used are according to those defined in the previous section.

Definition 3.1. The k-th principal component score, denoted by Wk, is given by

Wk “ η̃Tk pX̃ ´ µ̃q

Definition 3.2. The k-dimensional principal component vector, denoted by Wpkq, is
defined as

Wpkq
“ rW1 W2 ¨ ¨ ¨ Wks

T
“ ΓTk pX̃ ´ µ̃q

Definition 3.3. The k-th principal component projection vector, denoted by P̃k, is de-
fined as

P̃k “ Wkη̃k “ η̃η̃T pX̃ ´ µ̃q
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Sample principal components

Let X “ rX̃1, X̃2, ¨ ¨ ¨ , X̃ns be a dˆn matrix which I will refer to as a data matrix. Since
the true mean and variance of the population are generally unknown, we estimate these
parameters using the sample mean, sX , and sample covariance, S , respectively.

sX “
1

n

n
ÿ

i“1

X̃i and S “ 1

n´ 1

n
ÿ

i“1

pX̃i ´ sXqpX̃i ´ sXqT

The data that we use is always centered unless otherwise stated. Centered data will be
denoted by Xcent “ rX̃1 ´ sX, X̃2 ´ sX, ¨ ¨ ¨ , X̃n ´ sXs. Data is centered as it simplifies
the calculation of S. Covariance matrix, for centered data is given by 1

n´1
XcentXT

cent

This information regarding the sample variance and sample mean for the data matrix
X will be provided using the notation X „ Samp sX,Sq.

Assume that the matrix S has rank r ď d. Then, using (3.2), implies that S “ pΓpΛpΓT .
Denote the eigen valuess and vectors of this matrix by pλj and p˜jη. Assuming that the
rank of the matrix S is r ă d, then the definitions of Principal components for a sample
are given below:

Definition 3.4. The k-th principal component score of the data X, denoted by W̃‚k

is given by the row vector

W̃‚k “ pηTk Xcent

Definition 3.5. The principal component data is the matrix Wpkq consisting of the
first k principal component scores, W̃‚k, that have been defined above.

Wpkq
“ pΓTk Xcent “

»

—

—

—

–

W̃‚1

W̃‚2
...

W̃‚k

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

pηT1 Xcent

pηT2 Xcent
...

pηTk Xcent

fi

ffi

ffi

ffi

fl

Definition 3.6. The d ˆ n matrix of k-th principal component projections P‚k is
defined as follows

P‚k “ pηkW̃‚k “ pηk
 

pηTk Xcent

(

3.2.1 Properties of principal components

Before mentioning the properties of the principal components, an outline of how principal
components are calculated is quite useful.

Let the data under consideration have dimension “d”. This implies that each ob-
servation is a d ˆ 1 column vector whose i-th row corresponds to the value taken by
i-th random variable Xi. In other words, all the observations can be viewed as the re-
alizations of the random vector X̃ “ pX1, X2, ¨ ¨ ¨ , Xdq

T . Let us assume that our data
consists of n observations of the random vector X̃. Let the observed vectors be denoted
as X̃1, X̃2, ¨ ¨ ¨ , X̃d.
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1. As mentioned earlier, the true covariance matrix of the population is often unknown
and hence estimated using the sample covariance matrix S. The first step therefore
is to center the data and calculate the sample covariance matrix S.

2. The eigen values and eigen vectors of the symmetric matrix S must be calculated.
Let the eigen values be defined as pλ1 ě

pλ2 ě ¨ ¨ ¨ ě
pλd.

3. The sample principal component vectors can now be calculated using the formula
pηTi Xcent.The i-th column of the matrix just defined corresponds to the principal
component score corresponding to the i-th observation.

Remark 3.2. I earlier mentioned that PCA utilizes the original set of variablesX1, X2, ¨ ¨ ¨ , Xd

to produce a new set of variables called principal component scores PC1, PC2, ¨ ¨ ¨ , PCm
such that m ăă d. It will be shown later that these new set of m variables are nothing
but the m random vectors η̃Ti X̃ for i P t1, 2, ¨ ¨ ¨ ,mu. However, it is important to re-
member that these new set of variables are “best” in the sense that they are those linear
combinations of the original variables which explain the maximum variablity in the data.
The new set of variables, as shown in Theorem 3.1, have the special property that they
are always uncorrelated to one another.

Correlation structure of the PC scores

Theorem 3.1. X̃dˆ1 „ pµ̃,Σq and let r ď d be the rank of matrix Σ. Let W̃ pkq be defined
as in definition (3.2).

1. The mean and covariance of W̃ pkq are given by

ErW̃ pkq
s “ 0̃ and VrW̃ pkq

s “ Λk

2. The variance and covariance properties of the individual principal component scores
are as follows:

VrWks “ λk for all k P t1, ¨ ¨ ¨ , ru and covpWk,Wlq “ 0 for all k ‰ l.

Proof. ErW̃ pkqs “ 0̃ follows from the linearity of expectation. Clearly, proving that
VrW̃ pkqs “ Λk automatically proves the second part of the above theorem. Only thing
left to show is that VrW̃ pkqs “ Λk.

VrW̃ pkq
s “ ErΓTk pX̃ ´ µ̃qT pΓkqs

“ ΓTkErpX̃ ´ µ̃qpX̃ ´ µ̃qsΓk

“ ΓTkΣΓk

“ ΓTk ΓΛΓTΓk

“ Λk

Note that the last step follows from (3.3) that I mentioned earlier.

Theorem 3.2. X̃dˆ1 „ pµ̃,Σq such that the matrix Σ has eigen values λ1, ¨ ¨ ¨ , λd. Then,

d
ÿ

j“1

VrXjs “

d
ÿ

j“1

VrWjs “

d
ÿ

j“1

λj

38



Proof. The theorem (3.1) implies that
řd
j“1 VrWjs “

řd
j“1 λj. So, it is left to prove that

řd
j“1 VrXjs “

řd
j“1 λj. From the definition of Σ,

řd
j“1 VrXjs “ tracepΣq. Since Σ and Λ

are similar matrices (i.e. Σ “ ΓTΛΓ ), the trace of both the matrices will be equal.

Remark 3.3. Observe that the theorem 3.2 implies that the total variation explained
by all the old variables is equal to that explained by the new variables.

Proposition 3.1. Let X̃ „ pµ̃,Σq. Assume that Σ has rank d. For k ď d, consider the k-
dimensional principal component vector, W̃ pkq, of X̃. If Σ has the spectral decomposition
Σ “ ΓΛΓT , then

covrX̃, W̃ pkq
s “ ΓΛIdˆk

In particular,

covpXj,Wlq “ λlηlj

In the above notation, λl is the l-th largest eigen value. W̃ pkq “ rW1 W2 ¨ ¨ ¨ Wks
T .

Finally, η̃l “ pη̃l1 η̃l2 ¨ ¨ ¨ η̃ldqT .

Proof. Without loss of generality, the random vector X̃ can be assumed to have zero
mean. Then, using the definition of covariance and principal component score, we can
write that:

covrX̃, W̃ pkq
s “ ErpX̃ ´ 0̃qpW̃ pkq

´ 0̃qT s “ EpX̃X̃TΓkq “ ΣΓk “ ΣΛIdˆk

because ΓTΓk “ Idˆk.
However, if ErX̃s “ µ̃ ‰ 0̃, then

covrX̃, W̃ pkq
s “ ErpX̃ ´ µ̃qpW̃ pkq

q
T
s “ ErX̃pW̃ pkq

q
T
s ´ Erµ̃pW̃ pkq

q
T
s “ ErX̃pW̃ pkq

q
T
s

Above statement holds since ErW̃ pkqs “ 0̃. The result follows from the above calculations.

Remark 3.4. It was shown in theorem 3.1 that the set of new variables W1,W2, ¨ ¨ ¨ ,Wd

are uncorrelated variables. However, theorem 3.1 implies that it is possible for an old
variable to be correlated with the new variable.

3.3 PCA - A variance maximization technique
I earlier mentioned that the variables tη̃T1 X̃, η̃T2 X̃, ¨ ¨ ¨ , η̃Td u are the new set of variables
that are derived using the original set of variables X1, X2, ¨ ¨ ¨ , Xd. It was also stated
that the new set of variables are always uncorrelated irrespective of correlation relations
between the original set of variables.

In this section, we will prove that the eigen vectors of the covariance matrix represent
the perpendicular directions in the space (where the data lies) in which out data exhibits
“maximum” variance. What “maximum variance” implies will become more clear in theis
section.

Let β̃1 be the vector in Rd such that the variance of β̃T1 X̃ is maximized.

Vrβ̃T1 X̃s “ β̃T1 Σβ̃1 (3.4)
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Clearly, the quantity in (3.4) is unbounded as β̃1 can take the value of any vector of
arbitrarily large magnitude. Therefore, a unique vector that maximizes the variance in
(3.4) can be obtained only after placing a restriction on the magnitude of β̃. Therefore,
the optimization problem that we want to solve is

maximize β̃T1 Σβ̃1 over all β̃1 P Rd, under the constraint β̃T β̃ “ 1

Since the problem we have is that of constrained optimization, it can be solved using the
Lagrange multiplier method.

Lpβ̃1q “ β̃1Σβ̃1 ´ θ1p1´ β̃
T
1 β̃1q, where θ1 “ Lagrange multiplier (3.5)

Differentiating both the sides of (3.5), we get

BLpβ̃1q

Bβ̃1

“ Σβ̃1 ´ θ1β̃1 “ 0

Therefore, the value of θ1 is such that

Σβ̃1 “ θ1β̃1 (3.6)

This implies that the pair pθ1, β̃1q is one of the eigen value-eigen vector pairs of the matrix
Σ.

In order to identify which eigen value-eigen vector pair it corresponds to, we use the
information that the variance of β̃T1 X̃ is maximum. We know that

Vrβ̃T1 X̃s “ β̃T1 Σβ̃1 (3.7)

“ β̃T1 θ1β̃1 (3.8)

“ θ1 since β̃T1 β̃1 “ 1 (3.9)

From equations (3.6) and (3.7), it is clear that θ1 is an eigen value of highest possible
value. This means that θ1 “ λ1 and β̃1 “ η̃1.

Now, we want the vector β̃2 such that

β̃T2 β̃2 “ 1

covpβ̃1
T
X̃, β̃2

T
X̃q “ 0

Vrβ̃T2 X̃s “ β̃T2 Σβ̃2 is the second largest projection variance

(3.10)

Simplification of the condition that the covariance between the first two principal com-
ponents scores is zero is given below:

covpβ̃1
T
X̃, β̃2

T
X̃q “ 0

ùñ Erpβ̃T1 X̃ ´ β̃T1 µ̃qpβ̃
T
1 X̃ ´ β̃T1 µ̃q

T
s “ 0

ùñ β̃T1 Σβ̃2 “ β̃T1 pλ2β̃2q “ 0

ùñ β̃T1 β̃2 “ 0 and β̃T2 β̃1 “ 0

Conversely, if β̃T1 β̃2 “ 0 and β̃T2 β̃1 “ 0, then

Given that β̃T1 β̃2 “ detpβ̃T1 β̃2q “ detpβ̃1β̃
T
1 q “ 0

Thus, detpβ̃T1 Σβ̃2q “ detpβ̃T2 Σβ̃1q “ detpβ̃2β̃
T
1 q ˆ detΣ
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Therefore, we showed that the conditions that β̃T1 β̃2 “ β̃T2 β̃1 “ 0 and covpβ̃T1 X̃, β̃
T
2 X̃q “ 0

Hence, the problem mentioned in 3.10 now converts to finding a vector β̃2 such that the
variance of the vector β̃T2 X̃ is maximized under the constraints

β̃T2 β̃2 “ 1

β̃T2 β̃1 “ β̃T1 β̃2 “ 0

The Lagrange equation will now be

Lpβ̃2q “ β̃T2 Σβ̃2 ` θ2p1´ β̃
T
2 β̃2q ` θ2‚β̃1β̃2 (3.11)

with θ2 and θ2‚ as the legrange multipliers.

3.4 Visualizing PCA and the need to standardize data
This section discusses the different ways in which PCA can be visualized. In addition
to that, this section discusses the need to standardize the raw data before applying data
analysis.

Wisconsin Diagnostic Breast Cancer (WDBC)

We return to the WDBC data. As mentioned earlier, it consists of data collected from 569
individuals suffering from breast cancer. Values of thirty different quantitative variables
were measured on each individual. In addition to these 30 variables, there is a categorical
variable indicating the diagnosis of the patient. It is a binary random variable that can
take the values “M” (malignant) and “B” (benign). The first few rows and columns of
this data set are given in figure 3.1. Note that the first variable refers to the unique ID
given to a particular patient while the second variable is the categorical variable defined
earlier.

Figure 3.2: Some of the variables in WDBC
data

The characters highlighted in yellow in the picture 3.2 are five of the 30 different
quantitative variable values noted as part of the study. Clearly, the variable corresponding
to the 4th column exhibits large variance due to the large values that the variable takes.
On the contrary, the variable corresponding to the 5th column has a variance close to 0.
From 3.2, we observe that the magnitude of each variable is different. This is a problem
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because the amount of variation in the data will depend on units in which each variable
is defined.

Consider for instance, the third variable of the WDBC data shown in 3.1. This
variable corresponds to the mean radius of the breast cancer cells for a given patient.
Let us assume that the radius values are measured in micrometers. The first 15 values
written in the third column are printed using R code.

> breast.cancer.data = read.csv(choose.files())
> cancer.sub = breast.cancer.data[,-c(1,2)]
> cancer.sub[1:15,1]
[1] 20.57 19.69 11.42 20.29 12.45 18.25 13.71 13.00 12.46 16.02 15.78
[12] 19.17 15.85 13.73 14.54

> max(cancer.sub[,1])
[1] 28.11

> min(cancer.sub[,1])
[1] 6.981

From the first fifteen values listed above, we can say that the radius of the cancerous
cells is probably lying between 10µm and 20µm for most observations. This gives us an
approximate range of 10µm. However the maximum and minimum values taken by the
variable implies that it has a range of 28.11µm ´ 6.981µm “ 21.129µm. However, the
range of the radius variable would have been quite close to 0 if the radius was measured
in meters instead of micro-meters. The range would then be 21.129 ˆ 10´6µm « 0.
Therefore, the spread associated with a given variable is dependent on the units in which
it is measured. This implies that the principal component vectors ( or the eigen vectors
of Σ) are more likely to align in the directions which exhibit large variance and this large
variation might simply be due the choice of the units in which the variable is expressed.
The problem can be better visualized with the help of parallel co-ordinate plots.

Parallel co-ordinate plots

Parallel co-ordinate plots are one of tools used to visualize multivariate data. It allows
us to look at multiple quatitative variables at once. Consider the WDBC data again. A
parallel co-ordinate plot for a subset of the data is given in Figure 3.3. In this plot, the
values taken by the first five variables for three observations is shown graphically.

> library(ggplot2)
>library(GGally) # GGally is required for parallel co-ord plots
> ggparcoord(cancer.sub[200:202, 1:5],groupColumn = 1, scale = "globalminmax" )

In the above R code, the 200th, 201st and 202nd observations are plotted. In addi-
tion to that, the values taken by the first five variables is plotted for each of the three
observations. Note that the code “scale = globalminmax” implies that the raw data is
plotted as it is without applying any transformations. The plot is shown in Figure 3.3.

The horizontal axis mentions the names of the first five variables. Each vertical line
passing through the variable points on x-axis are independent axes which measure the
magnitude of the corresponding variable. All the points joined by a line correspond to
values of the same observation. Since each variable has its own co-ordinate and all such
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co-ordinates are parallel to each other, the plot in figure 3.3 is called a parallel co-ordinate
plot.

Figure 3.3: Parallel co-ordinate plot for a subset of
the WDBC data.

Parallel co-ordinate plot for raw WDBC data

The parallel co-ordinate plot for raw WDBC data is given in figure 3.4. The variables
of the breast cancer data set have been renamed 1, 2 ¨ ¨ ¨ , 30 respectively for the sake of
convenience in visualizing parallel co-ordinate plots.

Figure 3.4: Parallel co-ordinate plot for untrans-
formed WDBC data.

It is quite clear from the parallel plot that the fourth, fourteenth and twenty-fourth
variables of the WDBC dataset vary to a great extent. In fact, the variation found in
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other variables is almost negligible in comparison to these three variable. This means
that the eigen vectors of Σ (or S) will be dragged towards the axes along which these
three variables are present. This, in fact, can be seen by observing the first three eigen
vectors of Σ in 3.5. As expected, the weights corresponding to the fourth and twenty-
fourth variables are the largest in magnitude for the first two eigen vectors. However,
the third eigen vector has maximum weight for the fourteenth variable which is the third
largest varying variable in the data set.

> var = cov(cancer.sub)
> dim(var)
[1] 30 30
eigen = eigen(var, symmetric = T, only.values = F)

Figure 3.5: First three eigen vectors of the
raw data’s covariance matrix.

If the variables 4, 14 and 24 are the most informative variables for the breast cancer
data, then the PCA on raw data would give reliable results. However, if at least one of
these three variables happens to have large variance because of the scale it was measured
on, then we are likely to make wrong predictions and estimates. If the latter scenario
occurs, scaling the raw data is a possible solution to our problem.

Definition 3.7. Let X̃ „ pµ̃,Σq. Define a diagonal matrix Σdiag (different from the
sample covariance matrix Σ) with variance of Xi as the pi, iq-th element of the matrix
ΣD.

Σdiag “

»

—

—

—

–

σ2
1 0 ¨ ¨ ¨ 0

0 σ2
2 ¨ ¨ ¨ 0

...
... . . . ...

0 0 ¨ ¨ ¨ σ2
d

fi

ffi

ffi

ffi

fl
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Then, the scaled or standardized random vector X̃scale is given by

X̃scale “ Σ
´ 1

2
diagpX̃ ´ µ̃q where ErX̃s “ µ̃

Definition 3.8. Similarly, for X „ Samp sX,Sq, the scaled or standardized data is
analogously defined as given below. Note that Sdiag is defined just like the way Σdiag was
defined earlier.

Xscale “ S´
1
2

diagpXcentq

Theorem 3.3. Let X̃ „ pµ̃,Σq and assume that the matrix Σ has rank d. Σdiag is defined
as in definition 3.7. Also, X̃scale “ Σ

´ 1
2

diagpX̃ ´ µ̃q. Then the following two results hold.

1. The covariance matrix of X̃scale is the matrix of correlation coefficients R.

VrX̃scales “ Σ
´ 1

2
diagΣΣ

´ 1
2

diag “ R

2. The covariance between the i-th and j-th elements of X̃scale is equal to the correlation
between the same two elements.

If X̃scale “ pX
s
1 , X

s
2 , ¨ ¨ ¨ , X

s
dq, then covpXs

i , X
s
j q “

covpXi, Xjq
a

VrXis
a

VrXjs

Proof. The theorem can be proved by stright-forward calculations. Note that the matrix
Σ needs to be full rank to ensure the existance of Σ

´ 1
2

diag.

Corollary 3.1. Let X̃ „ pµ̃,Σq. Let the rank of Σ be r and let R be the corresponding
correlation matrix. Then,

tracepRq “
r
ÿ

j“1

λscalej “ r

Proof. If Σ is a matrix of rank r ď d, then Σ will be similar to a diagonal matrix D of
rank r. This is because Σ is a symmetric matrix. D is a diagonal matrix of rank r implies
that there are r non-zero diagonal entries in the matrix D. —–

Example 3.1. Let us go back to the WDBC dataset. R code to calculate the trace of
the correlation matrix is given below.

> var = cov(cancer.sub)
> corr.matrix = cov2cor(var)
> trace = 0
> a = corr.matrix[1,1]
> for (i in 1:30) {
+ trace = trace + corr.matrix[i,i]
+ i = i+1
+}
> trace
[1] 30
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The sum of the r largest eigen values of the correlation matrix will be equal to the
sum of all eigen values of R because R must have d´ r zero eigen values. This is because
R is similar to a diagonal matrix Λ of rank r.

> eigen2 = eigen(corr.matrix, symmetric = T, only.values = F)
> sum(eigen2$values)
[1] 30

The fact that the trace of R is 30 implies that none of the variables involved exhibit
linear dependencies on each other. 4

3.5 Principal Component analysis as a change of basis
problem

3.5.1 Toy example

Consider the following hypothetical experiment to understand the purpose of Principal
component analysis. Let us assume that we are interested in studying the motion of a
spring placed in a room. The system we are interested in consists of a spring and a mass
“M” attached to it. If the spring is released a small distance away from the equilibrium,
then the spring begins to oscillate about its equilibrium position. In this case, we know
that the spring’s motion can be viewed as a one dimensional motion along the axis of the
spring. However, consider the case where experimenters have no clue of how the spring
moves. Their aim instead is to identify the dynamics of the spring.

In such a scenario, the experimenters would probably record the snapshots of the
moving spring at different points of time using three movie cameras (since we live in a
3-dimensional world) placed at three different locations as depicted in the Picture 3.6.
The position of the spring is plotted in a 2-dimensional world spanned by each movie
camera. The experimenters might have arbitrarily chosen their camera angles to measure
the motion because they may or may not know the perfect way to view the motion. The
experimenters must therefore utilize this 2D information to somehow identify that there
exists a one dimensional axis or direction along which the dynamics of the spring can be
well observed. This is what PCA does, it identifies the direction along the axis of the
spring using the 2D data we procure from each camera.

This example is important because this also helps us to understand what happens
in the real world. We often do not know which kind of measurements best reflect the
dynamics of interest. Just like in the spring experiment, we often do not know the number
of variables we need to sufficiently understand the property of interest. We might even end
up using more variables than required. In addition to all this, real world data is imperfect
due to noise. In the spring example, noisy data could result due to imperfect cameras
or aerial friction. This is where principal component analysis comes into picture. PCA
allows us to re-express the data we have in a way that uncovers hidden structures
which were not initially apparent in the raw data.

3.5.2 Change of Basis

As mentioned earlier, PCA aims to “re-express the data” we have in a way that uncovers
important information about the system under consideration. This re-expression of data
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Figure 3.6: Toy example to understand
PCA. Picture taken from [Shl14]

happens because PCA changes the basis vectors with respect to which we view the data
points in space.

An important assumption to remember is that PCA assumes that the data points
lie in low dimensional linear subspace of the original space. The data points are
NOT assumed to lie on a geometric surface that has a curvature. For example, PCA
can not extract useful information from a data set which has all its points generated
from the uniform density on unit sphere. I would like to mention a assumption that
is often assumed without question. It is that the orthonormal basis with respect to
which we represent the raw data is the standard basis tẽ1, ẽ2, ¨ ¨ ¨ , ẽnu where ei “ pδijqmj“1.
Additionally, all the given data points, without loss of generality, are assumed to be
centered and scaled.

Notation: We will assume that each data point or vector we take note of lies in Rm.
The number of samples collected is given by n. Each data vector is denoted by x̃i for
i P t1, 2, ¨ ¨ ¨ , nu. The mˆ n matrix X consists of the sample vectors x̃i’s as its n column
vectors.

Now, let X be the original m ˆ n data matrix. Let Y be a m ˆ n matrix related to
X through the invertible linear transformation P of size mˆm. Then,

PX “ Y or Px̃i “ ỹi for all i P t1, 2, ¨ ¨ ¨ , nu

Further simplification shows that

PX “

»

—

—

—

–

p̃1

p̃2
...
p̃m

fi

ffi

ffi

ffi

fl

“

x̃1 x̃2 ¨ ¨ ¨ x̃n
‰

“

»

—

–

p̃1 ¨ x̃1 ¨ ¨ ¨ p̃1 ¨ x̃n
... . . . ...

p̃m ¨ x̃1 ¨ ¨ ¨ p̃m ¨ x̃n

fi

ffi

fl

(3.12)

From (3.12), it is clear that the ith column of Y is given by:

ỹi “

»

—

–

p̃1 ¨ x̃i
...

p̃m ¨ x̃i

fi

ffi

fl

(3.13)
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The following important observation can be made using (3.13). Assume that the vectors
p̃i are unit vectors.

Each coefficient of ỹi is given by the dot product of x̃i with the corresponding row
in p̃i. Geometrically, the jth component of ỹi is the length of the projection of x̃i onto
the vectors p̃j for j P t1, 2, ¨ ¨ ¨ ,mu. In other words, the rows of P form a basis for the
column space of X i.e. we can use the rows of P to re-express the original data set X.

Finally, what we wish to show is that PCA uses certain vectors called principal com-
ponents to re-express the original data frame. In terms of the notations we just used, p̃i’s
are the principal component vectors with respect to which we re-express the data X and
get Y in terms of the basis tp̃1, ¨ ¨ ¨ , p̃mu.

Questions Remaining

By restricting to look for new variables which are linear combinations of the original
variables, the problem reduces to the problem of change of basis. Now, the natural
question that will follow are “What is a “good” choice of the basis?” or “What is the best
way to re-express the data matrix X?”

The decision of what is the “best” basis or procedure to re-express the data will depend
on the kind of features of properties we would like to retain in our information. In the case
of PCA, the property of the data that we are most interested in is variance. Therefore,
we would like to find the directions (or principal component vectors) in Rm where the
data exhibits maximum variability and minimum redundancy.

Consider the equation (3.12) once again. In (3.12), the original m variables of vector
x̃ is converted to a different set of variables via the transformation P. Our aim is to
find a transformation such that the new set of variables in ỹ explain maximum variance
and eliminate redundancy as much as possible. Since covariance measures redundancy,
it implies that the transformation P must diagonalize the matrix Σx (covariance matrix
of the vector X̃) or in other words we wish to find a basis tp̃1, ¨ ¨ ¨ , p̃mu such that the
basis diagonalizes the matrix Σx.These new set of basis vectors are called “principal
component vectors”. Since Σx is often unknown, it is estimated as 1

n´1
XXT .

The process of PCA as a change of basis problem can be summarized pictorially in
the following manner in 3.7:

Figure 3.7: Illustration of what PCA is
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3.5.3 PCA and spectral decomposition

Since, Σx is a symmetric matrix, it is clear that Σx “ ETDE holds where E is the matrx
of eigen vectors of Σx while Disadiagonalmatrix..

pΣy “ PΣxP
T

“ PEDETPT

Clearly by taking P “ ET , we can show that a matrix with eigen vectors as rows diago-
nalizes the matrix Σx.

3.6 Data Analysis
In this section, we apply PCA technique on real life data set. The data set I considered
is the “Parkinsons dataset”. This dataset consists of 195 voice recordings. 22 attributes
that are a measure of voice (Eg. frequency, amplitude, pitch etc) were calculated. In
addition to this, there is an additional variable that records the status of each patient as
either 1 or 2. Having a status of 1 implies that the patient has the Parkinson’s disease
while a status of 0 implies that the patient does not have Parkinson’s disease. The data
has been shown below for better understanding.

Figure 3.8: Parkinsons dataset.

> library(psy) # install the psy package for scree.plot() function \\
> library(readxl) \\
> # use ‘‘Import Data set’’ in R to read the data into R \\
> dim(parkinsons_data_set)
[1] 195 24
> names(parkinsons_data_set)
[1] "name" "MDVP:Fo(Hz)"
[3] "MDVP:Fhi(Hz)" "MDVP:Flo(Hz)"
[5] "MDVP:Jitter(%)" "MDVP:Jitter(Abs)"
[7] "MDVP:RAP" "MDVP:PPQ"
[9] "Jitter:DDP" "MDVP:Shimmer"
[11] "MDVP:Shimmer(dB)" "Shimmer:APQ3"
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[13] "Shimmer:APQ5" "MDVP:APQ"
[15] "Shimmer:DDA" "NHR"
[17] "HNR" "status"
[19] "RPDE" "DFA"
[21] "spread1" "spread2"
[23] "D2" "PPE"
> parkinson.sub = parkinsons_data_set[,2:24]
# ‘‘name’’ column removed
> parkinson.sub.2 = parkinson.sub[-c(17)]
# excludes the status attribute

Calculating variance and eigen vectors of the covariance matrix:

> library(ggfortify)
> pca = prcomp(parkinson.sub.2, scale = T) \\
# gives std dev values and eigen vectors
> v = c(pca$sdev)^2
> v
[1] 1.295811e+01 2.485875e+00 1.542030e+00
[4] 1.464986e+00 9.739161e-01 7.291084e-01
[7] 5.522449e-01 3.624033e-01 2.898381e-01

[10] 2.241263e-01 1.405651e-01 1.048413e-01
[13] 6.973693e-02 3.816628e-02 2.201169e-02
[16] 1.778754e-02 1.245640e-02 7.214136e-03
[19] 3.496567e-03 1.084955e-03 3.618346e-07
[22] 3.312384e-08

Since a long list eigen values are hard to interpret or order in terms of increasing variance,
we plot a scree plot to obtain a visual representation of what is going on. Note that a
scree plot is nothing but a plot between the magnitude of the variance of a principal
component versus the order of that vector in terms of its variance. The scree plot for the
Parkinson data is given below:

> scree.plot(v, title = "Scree Plot", type = "E")

Figure 3.9: Scree plot for the Parkinsons
dataset.
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From the 3.9, it is clear that the first four or five PC scores dominate over all the others.
Therefore, reducing the dimensions to 4 or 5 variables seems reasonable pictorially.

> sum(v[1:2])/sum(v)
[1] 0.7019993
> sum(v[1:3])/sum(v)
[1] 0.7720916
> sum(v[1:6])/sum(v)
[1] 0.9160921

Since the first 6 PCs contribute to 90 percent of the variance, we can reduce the dimension
of our data to 6 from 22.

In addition to this, visualizing PC score plot in 2 and 3 dimensional world also help
us identify hidden patterns in the data set. 2-D and 3-D PC score plots for the parkinson
data have been plotted.

Figure 3.10: 2D PC score plot for Parkinsons dataset.

It is clear from both the 2D and 3D PC score plots that healthy individuals seem to
have a positive PC1 score with low variance while the PC1 score of Parkinson’s patients
is quite spread out. Therefore, there seems to be some association between the voice
measurements and a person’s status of health.

Although the 2D and 3D PC scores have provided us with the same set of information,
it is not the case this way all the time. Sometimes, 3D plots might exhibit information
that is not clearly seen in the 2D score plot.

3.7 Limitations and drawbacks of PCA
The limitionas and drawbacks of PCA can be identified by going through the assumptions
of PCA.

• The restriction to search for directions of maximum variance that are perpendicular
to each other might lead to loss of information as not all data exhibits maximum
variance in perpendicular directions.
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Figure 3.11: 3D PC score plot for Parkinsons
dataset.

• PCA is sensitive to scaling, in other words its values depend on the units of the
variables under consideration.

• The meaning of the new set of variables that we obtain after using PCA techniqe
have no meaning.

• The restriction that the data points must lie approximately on the subspace of the
original space definitely implies that the data lying on some surface with curvature
cannot be interpreted well with PCA.

• In PCA, we assume that the directions in which variance is low has no interest-
ingproperties of interest. Therefore, if a data set has important information stored
indirectons of low variance, then that information will be lost.
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Chapter 4

Linear, Quadratic and Fisher
Discriminant Analysis

The content of this chapter has been taken from [Koc14], [Gho15], [WB], [BW20], [CBRO],
[Fid16], [Ste] and [Ora08].

Definition 4.1. Classification is the prediction of a discrete random variable Y using
the observations made on random vector X̃. Here, X̃ is a d-dimensional vector with
values in X Ă Rd while Y is a uni-variate random variable that takes values from a finite
set Y .

A classification rule or classifier is a function h : X ÝÑ Y so that the result of
feeding an unseen observation X̃ “ x̃ is Y “ y.

A classifier is also called as a discriminant function.

The definition above is better understood with the help of an example.

Example 4.1. A subset of the iris dataset (available in R) is given below.

> data("iris")
> sub.iris = iris[c(1,2,3,51,52,53),]
> sub.iris

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
51 7.0 3.2 4.7 1.4 versicolor
52 6.4 3.2 4.5 1.5 versicolor
53 6.9 3.1 4.9 1.5 versicolor

Clearly, the above dataset has observations that can be grouped into two categories -
data vectors corresponding to the flowers belonging to the species “setosa” and those
corresponding to the species of the flower “versicolor”. In this example, the variable Y ,
introduced in definition 4.1, is a binary variable with support Y “ tsetosa, versicoloru.The
random vector X̃ introduced in 4.1 is a 4-dimensional random vector. The 6 observations
made of this four dimensinal random vector are the six rows of the table above.

Our aim, then is to find a function h : X ÝÑ Y such that hpx̃0q, for some unseen
observation (corresponding to a flower) x̃0, predicts the class or label or species of the
flower correctly. 4
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Definition 4.2. The definition 4.1 can be extended to the scenario where k different
classes exist. Let X̃ denote a d-dimensional random vector which takes the values X Ă Rd

and Y is a discrete random variable that takes k different values or labels. In other words,
Y takes one of the values from Y “ t1, 2, ¨ ¨ ¨ , ku. Then, classification is the problem of
producing a function h : X ÝÑ Y such that hpx̃q, for some unseen data vector x̃, predicts
the class to which x̃ belongs to.

Example 4.2. The following is an example of a multi-class classification.

> iris[c(1,2,51,52, 102,103),]
> Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
51 7.0 3.2 4.7 1.4 versicolor
52 6.4 3.2 4.5 1.5 versicolor
102 5.8 2.7 5.1 1.9 virginica
103 7.1 3.0 5.9 2.1 virginica

In the above example, there are three unordered levels of the discrete random variable
Y . That is, Y “ t setosa , versicolor , virginica u. Here, X̃ is a 4-dimensional vector as
in the previous example. 4

Definition 4.3. The true error rate of a classifier h : X ÝÑ Y , as defined earlier, is
defined as

Lphq “ PphpX̃q ‰ Y q

The true error rate calculates the chance that what h predicts is not equal to the true y
value.

However, the distribution of X̃ and Y are unknown. Therefore, the true error rate
of a classifier must be estimated. This estimate is called as the empirical/training error
rate.

Definition 4.4. The empirical/training error rate of a classifier is defined as

pLn “
1

n

n
ÿ

i“1

Iphpx̃iq ‰ yiq

In the above definition, x̃1, x̃2, ¨ ¨ ¨ , x̃n are the n realizations of the random variable X̃.

Definition 4.5. One of the possible options for the classifier h is the Bayes classifier
h˚. X̃ is a d-dimensional random vector while Y is a random variable which takes one of
the t possible values t1, 2, ¨ ¨ ¨ , tu. For an unseen observation x̃, it is defined as

h˚px̃q “ max
@k

PpY “ k|X̃ “ x̃q (4.1)

Using Bayes rule, the right hand side of the equation 4.1 can be simplified as

PpY “ k|X̃ “ x̃q “
PpX̃ “ x̃|Y “ kqPpY “ kq

řn
i“1 PpX̃ “ x̃|Y “ iqPpY “ iq

(4.2)

As observed above, PpY “ k|X̃ “ x̃q is given more importance than PpX̃ “ x̃|Y “ kq
although one can be obtained from the other using equation 4.2. The reason behind this
importance can be understood using the Prosecutor’s Fallacy.
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Prosecutor’s Fallacy

Prosecutor’s fallacy can be better understood with the help of an example. The fallacy
is called “Prosecutor’s fallacy” because this “logic” is very often used by prosecutors as
evidence in favour of the crime committed by the accused.

Let us consider the following hypothetical scenario.
Let Mr. X, who is innocent, be accused of murdering a man “M”. Assume that this
accusation is solely based on the fact that the fingerprint of the murderer and that of Mr.
X match. Mr. A, the prosecutor accusing Mr. X of the murder, claims that the chance
of two fingerprints matching, based on the fingerprint data set they have, is one in ten
million. Therefore, it is highly unlikely for Mr. X to be innocent.

The logic, given in italics, used as evidence to accuse Mr. X of the crime is the
Prosecutor’s fallacy. However, the reason why the “logic” is a fallacy is explained by Mr.
X’s defence prosecutor Mr. D. Mr. D explains it using the table in 4

Match No match
Guilty 1 0

Innocent 5 50 million

Firstly, for Mr. X to be accused of the crime, it must be assumed that the data base
of 50 million finger prints actually includes the finger print of the true murderer. Even
if it is assumed that the true murderer’s finger print is in the records being used, the
probability that two fingerprints match is one in ten million. This implies that there
are approximately five individuals whose finger print matches with that of the murderer
simply by chance. Hence, the probability of Mr. X being innocent, given that his finger

print matches with that of the murderer, is
5

6
« 83%. Thus, according to Mr. D, is not

yet proved to be guilty. Therefore, he is innocent until proven guilty.
Mr. A uses the conditional probability Pp Match | Innocent q “ 1{10m while Mr.

D uses the conditional probability Ppinnocent| match q to prove their respective points.
However, the conditional probability used by Mr. A is not important in the current
context for two reasons:

1. The conditional probability Pp Match | Innocent q “ 1{10m quantifies the efficacy
of the method that uses finger prints to identify people. It does not (directly)
explain anything about the guilt of Mr. X.

2. We already know that there is a match. So, calculating the probability of obtaining
a match completely by chance is of no use.

In conclusion, although it is quite rare for the finger prints of two people to match, Mr.
X has a very high chance of being innocent given the evidence.

Prosecutor’s fallacy and Bayes classifier

The definition of Bayes classifier in 4.5 involved a d-dimensional random vector X̃ and a
discrete random variable Y with a finite set as its support.
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4.1 Optimality of Bayes Classifier
Theorem 4.1. Let h : X ÝÑ Y be a classifier as defined earlier. Assume a two class
problem i.e. Y “ t0, 1u. Then, the Bayes classifier h˚ : X ÝÑ Y is optimal in the
sense that the true error rate of the Bayes classifier is less than the true error rate of any
arbitrary classifier h.

Lph˚q ď Lphq ðñ Pph˚pX̃q ‰ Y q ď PphpX̃q ‰ Y q

Additionally, Bayes classifier has the property that it has the least Bayes risk when com-
pared to any other classifier.

Proof. Clearly, the following holds for any arbitrarily chosen classifier h.

PphpX̃q ‰ Y |X̃ “ x̃q “ 1´ PphpX̃ ´ Y “ 0q|X̃ “ x̃q (4.3)

An observation of the random variable hpX̃q ´ Y will equal to 0 only when phpX̃q, Y q is
p1, 1q or p0, 0q. Therefore, 4.3 can be simplified as

1´ PphpX̃q ´ Y “ 0|X̃ “ x̃q “ 1´ PphpX̃q “ 0, Y “ 0|X̃ “ x̃q ´ PphpX̃q “ 1, Y “ 1|X̃ “ x̃q

Claim: Conditional on X̃ “ x̃, the events thpX̃q “ ku and tY “ ku are independent.
Conditional on tX̃ “ x̃u, we have that hpX̃q “ hpx̃q i.e. hpX̃q is the value of h evaluated
at X̃ “ x̃. We also know that hpx̃q P t0, 1u.

Assume without loss of generality that hpx̃q “ 1. Then, Pphpx̃q “ 0, Y “ 1|X̃ “ x̃q “
0 because hpx̃q “ 1. Also, Pphpx̃q “ 0|X̃ “ x̃q “ 0 implies the following:

PphpX̃q “ 0, Y “ 0|X̃ “ x̃q “ PphpX̃q “ 0|X̃ “ x̃q ˆ PpY “ 0|X̃ “ x̃q (4.4)

Since it is already known that hpx̃q “ 1, the following holds true.

Pphpx̃q “ 1, Y “ 1|X̃ “ x̃q “ PpY “ 1|X̃ “ x̃q (4.5)

Using equation 4.5 and the fact that PphpX̃q “ 1|X̃ “ x̃q “ 1, we can write that:

PphpX̃q “ 1, Y “ 1|X̃ “ x̃q “ PphpX̃q “ 1|X̃ “ x̃q ˆ PpY “ 1|X̃ “ x̃q (4.6)

The equations 4.4 and 4.6 prove the following independence condition

PphpX̃q “ k, Y “ k|X̃ “ x̃q “ PphpX̃q “ k|X̃ “ x̃q ˆ PpY “ k|X̃ “ x̃q for k P t1, 2u.
(4.7)

Similar arguments can be used to prove the independence condition 4.7 if we start with
the assumption that hpx̃q “ 0 given that X̃ “ x̃. This proves the claim we stated earlier.

Clearly, PphpX̃q “ k|X̃ “ x̃q “ 1 if hpx̃q “ k and 0 if hpx̃q ‰ k. I will use the notation
1A to represent the indicator function on set A. Then,

1´ PphpX̃ “ Y q|X̃ “ x̃q “ 1´
!

1hpx̃q“1PpY “ 1|X̃ “ x̃q ` 1hpx̃q“0PpY “ 0|X̃ “ x̃q
)

(4.8)
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Since equation 4.8 holds for the Bayes classifier h˚ as well, the following difference can
be computed.

Pph˚pX̃ “ Y q|X̃ “ x̃q ´ PphpX̃ “ Y q|X̃ “ x̃q (4.9)

“ PpY “ 1|X̃ “ x̃qp1h˚px̃q“1 ´ 1hpx̃q“1q ` PpY “ 0|X̃ “ x̃qp1h˚px̃q“0 ´ 1hpx̃q“0q (4.10)

Using the facts that PpY “ 0|X̃ “ x̃q “ 1´PpY “ 1|X̃ “ x̃q and 1h˚px̃q“0 “ 1X´1h˚px̃q“1

in equation 4.9, we can simplify 4.9 as follows:

Pph˚pX̃ “ Y q|X̃ “ x̃q ´ PphpX̃ “ Y q|X̃ “ x̃q “
!

2PpY “ 1|X̃ “ x̃q ´ 1
)

p1h˚px̃q“1 ´ 1hpx̃q“1q

(4.11)

As a reminder, the Bayes classifier for two classes is given below:

h˚px̃q “

#

0, if PpY “ 0|X̃ “ x̃q ą 1
2

1, otherwise

Now, if PpY “ 0|X̃ “ x̃q ą 1
2
then h˚px̃q “ 0. Clearly, this would make equation

4.11 non-negative. Similarly, we can show that the equation 4.11 is non-negative when
PpY “ 0|X̃ “ x̃q ď 1

2
. This proves that the Bayes classifier is optimal.

Remark 4.1. Clearly, it is not possible to find a better classifier than the Bayes clas-
sifier. This is because the classifier is defined using distributions that are not known to
us. Therefore, several approaches to estimate the Bayes classifier are utilized to obtain
classifiers.

4.2 Linear and Quadratic Discriminant Analysis

PpY “ k|X̃ “ x̃q “
PpX̃ “ x̃|Y “ kq ˆ PpY “ 1q
řm
i“1 PpX̃ “ x̃|Y “ iqPpY “ iq

Bayes classifier utilizes the probability PpY “ k|X̃ “ x̃q which, as pointed out earlier, is
often not known. One possible way to estimate this unknown probability is by estimating
the probabilities PpX̃ “ x̃|Y “ kq and PpY “ kq for all possible values of k. Once we
obtain an estimate pppk|x̃q for the probability PpY “ k|X̃ “ x̃q, then Bayes classifier can
be estimated as follows:

ph˚px̃q “ k when max
@i

pP pi|x̃q “ pP pk|x̃q

Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis(QDA) uti-
lize the density estimation approach to obtain classifiers.

Assume the 2-class scenario once again as it helps understand the ideas better.

Definition 4.6. The Decision Boundary, Dh, of a classifier h is defined as the the set
of points for which the probability of being in class 0 is the same as that of class 1.

Dh “

!

x̃ | PpY “ 0|X̃ “ x̃q “ PpY “ 1|X̃ “ x̃q
)
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Notations and terminology:

PpY “ k|X̃ “ x̃q “
PpX̃ “ x̃|Y “ kq ˆ PpY “ 1q
řm
i“1 PpX̃ “ x̃|Y “ iqPpY “ iq

“
fkpx̃qπk

řm
i“1 fmpx̃qπm

(4.12)

The equation 4.12 has been written using the following notations:

• fkpx̃q “ PpX̃ “ x̃|Y “ kq is called the “class conditional”.

• πk “ PpY “ kq is called as the “prior probability” i.e. it is our belief regarding
the probability of an arbitrary point lying in class k before we learn the information
that X̃ “ x̃.

• The data points belonging to class i, for each i, are assumed to be coming from a
distribution with mean µ̃i and covariance matrix Σi.

• The number of classes is assumed to be m while the number of points from each
class is denoted by nk such that n “

řm
i“1 ni.

• Observations or realizations of the vector X̃ are given given by x̃1, x̃2, ¨ ¨ ¨ , x̃n.

As mentioned earlier, the quantity PpY “ k|X̃ “ x̃q must be estimated since its true
value is usually unknown. The estimation of this quantity is usually done with the help
of one of the two approaches.

1. Use density estimation methods to estimate prior and class conditional probabilities
using the data given.

2. Assume that the class conditional follows a parametric density. Using data, the
parameters associated with this density can be estimated.

LDA is based on the second method mentioned above. LDA assumes the class condi-
tional to bemultivariate Gaussian. The class conditional need not always be Gaussian
but this assumptions makes calculations easier since the Gaussian is a well understood
distribution. An additional assumption used in LDA is that the covariance matrices Σ0

and Σ1 are equal. This assumption is made to simplify calculations. Since the world
around is complicated and hard to understand, we use assumptions in order to create
models that we can work with.

Decision boundary in LDA

As mentioned earlier, decision boundary is defined as

D “

!

x̃ | PpY “ 0|X̃ “ x̃q “ PpY “ 1|X̃ “ x̃q
)

The decision bounder under the assumptions of LDA can be simplified as follows:

PpY “ 1|X̃ “ x̃q “ PpY “ 0|X̃ “ x̃q

ùñ
f1px̃qπ1

f0px̃qπ0 ` f1px̃qπ1

“
f0px̃qπ0

f0px̃qπ0 ` f1px̃qπ1

ùñ f1px̃qπ1 “ f0px̃qπ0 (4.13)
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Under the assumptions of normality and equality of covariance matrix, the following
further simplification can be made. Let Σ0 “ Σ1 “ Σ

Then the equation 4.13 can be simplified as follows:

π1 ˆ exp

"

´
1

2
px̃´ µ̃1q

TΣ´1
px̃´ µ̃1q

*

“ π0 ˆ exp

"

´
1

2
px̃´ µ̃0q

TΣ´1
px̃´ µ̃0q

*

(4.14)

Applying log on both sides and then simplifying the equation 4.14 gives us the equation
below.

´
1

2
px̃´ µ̃1q

TΣ´1
px̃´ µ̃1q `

1

2
px̃´ µ̃0q

TΣ´1
px̃´ µ̃0q ` log

π1

π0

“ 0 (4.15)

Simplification after opening the brackets in the above equation gives

x̃TΣ´1µ̃1 ` x̃
TΣ´1µ̃0 `

1

2
pµ̃T0 Σµ̃0 ´ µ̃

T
1 Σµ̃1q ` log

π1

π0

“ 0 (4.16)

Observe that the first two terms of the equation 4.16 are linear in x̃ while the remaining
terms are constants. Together, 4.16 represents a linear equation. The equation 4.16
can be re-written as follows:

x̃T pΣ´1µ̃1 ` Σ´1µ̃0q `

„

1

2
pµ̃T0 Σµ̃0 ´ µ̃

T
1 Σµ̃1q ` log

π1

π0



“ 0

Let Σ´1µ̃1 ` Σ´1µ̃0 denote a d ˆ 1 vector β̃ while the remaining part of the equation is
represented by the scalar a. Therefore, from the equation below it becomes quite clear
that 4.16 represents a linear equation.

x̃T β̃ ` a “ 0 (4.17)

Therefore, the decision boundary of the 2 class problem is a d ´ 1 dimensional hyper-
plane in Rd. Since the decision boundary is linear in x̃, the procedure is called Linear
Discriminant Analysis.

Now, assume that PpY “ 0|X̃ “ x̃q ą PpY “ 1|X̃ “ x̃q. Using the assumptions of
LDA and then using the simplification methods that we just used leads to the following
results.

tx̃ | PpY “ 0|X̃ “ x̃q ą PpY “ 1|X̃ “ x̃qu “ tx̃ | x̃T β̃ ` a ă 0u (4.18)

CHECK —- general locus of above equation
Consider for the sake of simplicity the following example where x̃ is assumed to belong

to R2 and R3 respectively.

Example 4.3. Let x̃ P R2 i.e. x̃ “ px1 x2q
T . Then, the (4.18) is equivalent to

tx̃ : x1β1 ` x2β2 ` a ă 0u “

$

&

%

x̃ :
x1

´

´ a
β1

¯ `
x2

´

´ a
β2

¯ ´ 1 ă 0

,

.

-

(4.19)

The locus of the points x̃ which satifies the expression in 4.19 is the one of the two halves
of the R2 plane that is formed by the line x1β1 ` x2β2 ` a “ 0

Similarly, if x̃ P R3 then the locus of the points, x̃, satisfying x̃T β̃ ` a ă 0 is one of
the two halves of R3 that is created by the plane x1β1 ` x2β2 ` x3β3 ` a “ 0 4

59



Figure 4.1: Hyperlane in 2-d
space Figure 4.2: Hyperlane in 3-d space

Bayes classifier:

Let PpY “ 0|X̃ “ x̃q be denoted by p0 while PpY “ 1|X̃ “ x̃q be denoted by p1

h˚px̃q “

#

0, if p0
p1
ą 1

1, if p0
p1
ď 1

The equation 4.17 implies that the decision boundary between classes 0 and 1 can be
estimated only after estimating the values of β̃ and a. This requires us to estimate the
mean and covariance matrix of the normal distributions which the m class conditionals
are assumed to follow. The estimators for the generalm-class problem is mentioned below
athough the general m-class problem hasn’t yet been discussed in the chapter.

The mean, µ̃k, of the points sampled from class k is estimated as

pµk “
1

nk

ÿ

ti:yi“ku

x̃i (4.20)

Due to the assumption Σ0 “ Σ1 “ ¨ ¨ ¨ “ Σk´1 “ Σ, the common Σ is estimated as
follows:

pΣk “
1

nk ´ 1

ÿ

ti:yi“ku

px̃i ´ pµkqpx̃i ´ pµkq
T

pΣ “

řn
r“1 nrΣr
řn
i“1 nr

(4.21)

Observe that the equation 4.21 is a weighted average. Therefore, more weight is given to
the covariance of classes with greater nk value.

Quadratic Discriminant Analysis

Relaxing the condition that Σ1 “ Σ0 gives us Quadratic Discriminant Analysis. In QDA,
class conditional is still assumed to be multivariate normal. Using simplifications similar
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to that done earlier, it can be shown that the decision boundery in this scenario is the
set of all x̃ such that:

´
1

2
x̃T rΣ1 ´ Σ0s x̃` x̃

T
rΣ1µ̃1 ` Σ0µ̃0s ´

1

2
µ̃T1

`

Σ´1
1 ` Σ´1

0

˘

µ̃0 ` log
π1

π0

“ 0 (4.22)

The equation in 4.22 is clearly quadratic in x̃ as it can be re-written in a simplified form
as follows:

x̃TAx̃` b̃T x̃` c “ 0 (4.23)

In the equation above, A represents a dˆ d matrix, b̃ represents a dˆ 1 vector while c is
a scalar from R.

If x̃ P R2, then equation 4.23 can be simplified as follows:

x̃TAx̃` b̃T x̃` c “
“

x1 x2

‰

„

a11 a12

a21 a22

 „

x1

x2



`
“

b1 b2

‰

„

x1

x2



` c “ 0 (4.24)

ùñ
 

a11x
2
1 ` a22x

2
2 ` pa12 ` a21qx1x2

(

` tb1x1 ` b2x2u ` c “ 0 (4.25)

From the simplifications in 4.24, it is clear that the decision boundary for a 2 class
problem in R2 is parabolic ( which is a quadratic equation). Now if we assume x̃ to be
a vector in R3, then the equation 4.23 can be simplified to give a quadratic equation in
three variables as follows.

x̃TAx̃` b̃T x̃` c “
“

x1 x2 x3

‰

»

–

a11 a12 a13

a21 a22 a23

a31 a32 a33

fi

fl

»

–

x1

x2

x3

fi

fl`
“

b1 b2 b3

‰

»

–

x1

x2

x3

fi

fl` c “ 0

(4.26)

ùñ

3
ÿ

i“1

aiix
2
i `

ÿ

@pi,jq:i‰j

aijxixj `
3
ÿ

k“1

bkxk ` c “ 0

(4.27)

Clearly, the equation in 4.26 corresponds to that of a quadratic surface, hence the
name quadratic discriminant analysis.

Remark 4.2. In LDA, we saw that decision boundaries in R3 are always 2-dimensional
subspaces or planes. However, in the case of QDA,the decision boundary in R3 is a
quadratic surface which is not one unique geometric object.
The general equation of a quadratic surface in two and three variables is given below:

Ax2
`By2

`Dxy `Gx`Hy ` J “ 0 where A,B,D,G,H P R
(4.28)

Ax2
`By2

` Cz2
`Dxy ` Exz ` Fyz `Gx`Hy ` Iz ` J “ 0 where A,B, ¨ ¨ ¨ , J P R

(4.29)

Examples of quadratic surfaces in R3 are spheres, ellipsoids, paraboloids, hyperboloids
etc.
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4.3 Multiclass classifier decision boundaries
Since we have already seen the 2-class case in some detail, it is time to go through the
multi-class scenario in some detail as well. If the number of classes is k ą 2, then multiple
decision boundaries which we are expected to predict using the data that we have. Certain
ideas related to defining decision boundaries have been discussed below. These are the
ideas one mostly gets for the first time while trying to figure out how to predict these
boundaries.

One vs all classifier

Let us assume that there exist k classes denoted by the numbers t1, 2, ¨ ¨ ¨ , ku. One option
would be to define k different boundaries, denoted by di for i P t1, 2 ¨ ¨ ¨ , ku, as follows:

• di if the boundary separating points in class i from the points not in class Ci.
Therefore, each di is obtained by performing LDA to the two class problem involving
classes “i” and “not i”.

However, the fact that this idea does not always work can be seen with a simple 3 class
scenario.

Example 4.4. Consider a hypothetical case where three classes, C1, C2 and C3 exist.
Let the boundaries that we obtain using 2-class LDA be as shown in figure 4.3

Figure 4.3: 1 vs all classifier example.

Clearly, the class to which points P1 and P2 belong to cannot be predicted using this
procedure. The point P1, according to the boundaries given can be concluded to belong
to both class C2 and C3. On the other hand, the point P2 belongs to none of the three
classes. Both these conclusions are not useful in classification. 4

One vs one classifier

Let us again assume the existence of k classifiers. In this procedure, we solve
`

k
2

˘

2-class
LDA procedures to obtain a decision boundary between the classes i and j for all possible
pairs pi, jq with i ‰ j. However, this procedure, just like the earlier procedure does not
always give useful results.
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Example 4.5. Consider three classes C1, C2 and C3. If the decision boundaries for this
scenario turn out to be as shown in the figure 4.4, then it is clear that if an unseen
observation belongs to the green triangle, then its class cannot be predicted uniquely.

4

Figure 4.4: 1 vs 1 classifier example. Picture
taken from [Fid16]

4.4 Multi-class LDA and QDA
The definitions and proofs seen so far were for the 2-class problem. However, the definition
of Bayes classifier along with the methods LDA and QDA can be extended to solve multi-
class problems. This section focuses on the scenario where m different classes exist. The
multi-class Bayes classifier is defined as follows:

h˚px̃q “ argmax
k

”

PpY “ k|X̃ “ x̃q
ı

(4.30)

Since ln : p0,8q ÝÑ R is an increasing function, we know that the value of k that
maximizes PpY “ k|X̃ “ x̃q is also the value of k that maximizes ln

”

PpY “ k|X̃ “ x̃q
ı

.

ln
”

PpY “ k|X̃ “ x̃q
ı

“ ln

"

fkpx̃qπk
řm
i“1 fmpx̃qπm

*

(4.31)

9 lnrnpx̃|µ̃k,Σkqs ` ln πk (4.32)

9 ´
1

2
ln pdetΣkq ´

1

2
px̃´ µ̃kq

TΣ´1
px̃´ µ̃kq ` ln πk (4.33)

Based on the assumptions involved, the equation (4.31) can be further simplified depend-
ing on the choice of method (LDA or QDA).

1. In case of LDA, we have Σi “ Σ for all i.

ln
”

PpY “ k|X̃ “ x̃q
ı

9´
1

2
px̃´ µ̃kq

TΣ´1
px̃´ µ̃kq ` ln πk (4.34)
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2. In case of QDA, common covariance matrix Σ cannot be assumed. Therefore, (4.31)
is simplified as:

ln
”

PpY “ k|X̃ “ x̃q
ı

9 ´
1

2
ln pdetΣkq ´

1

2
px̃´ µ̃kq

TΣ´1
k px̃´ µ̃kq ` ln πk (4.35)

Hence, based on whether the procedure chosen is LDA or QDA, the object to be
maximized over all possible classes is simplified. Multi-class Bayes classifier is defined as:

h˚px̃q “

#

´1
2

ln pdetΣq ´ 1
2
px̃´ µ̃kq

TΣ´1px̃´ µ̃kq ` ln πk, for LDA
´1

2
px̃´ µ̃kq

TΣ´1
k px̃´ µ̃kq ` lnπk, for QDA

(4.36)

LDA, QDA and the metric function

In this section, we see how LDA and QDA procedures can be simplified to distance
comparison problems.

LDA

To begin with, consider the LDA procedure.
Case-1: In addition to the assumption that all covariance matrices have to be equal,

assume that all the prior probabilities are equal. In otherwords, it can be interpreted as
the assumption that an equal number of points have been sampled for each of the m
classes.

Under these two assumptions, the equation (4.36) converts to

h˚px̃q “ argmax
k

δkpx̃q; where δkpx̃q “ ´
1

2
||x̃´ µ̃k||2 (4.37)

The Bayes classifier is now converted into a problem of distance comparison. An unseen
observation x̃ is predicted to belong to class k if x̃ is closest to the the mean vector
corresponding to class k. This has been explained graphically using the image 4.5.

Remark 4.3. Note that the class of a data point x̃ cannot be determined using a Bayes
classifier if the data point is equi-distant to two or more of mean vectors of the data.

Figure 4.5: Unseen vector x̃ P class 3
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Case-2: Now, consider the case where the covariance matrices are all identity but
the priors are unequal i.e. Σ1 “ Σ2 “ ¨ ¨ ¨ “ Σm “ Σ but all πi’s need not necessarily be
equal. Under these circumstances, the Bayes classifier can be modified as follows.

h˚px̃q “ argmax
k

δkpx̃q; where δkpx̃q “ ´
1

2
px̃´ µ̃kq

TΣ´1
k px̃´ µ̃kq ` ln πk (4.38)

“ argmax
k

expt´
1

2
px̃´ µ̃kq

TΣ´1
k px̃´ µ̃kqu ˆ πk (4.39)

From the equation in (4.38), we can see that if the points from a class occur more
frequently, i.e. the class has higher prior probability, then it must have a larger posterior
probability if all the distance terms were equal in magnitude. However, since this is not
always the case. The class with maximum posterior probability must be the term with
least distance between the point x̃ and corresponding mean vector.

The value of prior determines the position of the decision boundary as shown in figure
4.6

Figure 4.6: Position of decision boundaries

QDA

Case-3: Consider the more general case now. It is that the covariance matrices as well
as the priors need not be equal. This is exactly the way it is in QDA.

Let Σk “ UkΛkU
T
k for k P t1, 2, ¨ ¨ ¨ ,mu be the SVD for matrix Σk

Since the matrix U is orthogonal, he inverse of Σk can be calculated to be:

σ´1
k “ UkΛ

´1
k UT

k

Therefore the quadratic term in 4.36 can be simplified as follows:

px̃´ µ̃kq
TΣ´1

k px̃´ µ̃kq “ px̃´ µ̃kq
TUkΛ

´1
k UT

k px̃´ µ̃kq (4.40)
“ pUT

k x̃´UT
k µ̃kq

TΛ´1
k pU

T
k x̃´UT

k µ̃kq (4.41)

The diagonal matrix Λk with non-negative entries can be decomposed as Λ´1
k “ Λ

´ 1
2

k Λ
´ 1

2
k .

Using this piece of information, 4.40 can be simplified as follows:

px̃´ µ̃kq
TΣ´1

k px̃´ µ̃kq “ pU
T
k x̃´UT

k µ̃kq
TΛ

´ 1
2

k Λ
´ 1

2
k pUT

k x̃´UT
k µ̃kq

“pΛ
´ 1

2
k UT

k x̃´ Λ
´ 1

2
k UT

k µ̃kq
T
pΛ
´ 1

2
k UT

k x̃´ Λ
´ 1

2
k UT

k µ̃kq
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Consider the following transformation φk for all k P t1, ¨ ¨ ¨ ,mu where X is the support
of the random vector X̃.

φk : X ÝÑ R such that x̃ ÞÑ Λ
´ 1

2
k UT

k x̃ (4.42)

If we apply the transformation φk to data coming from class k, then X̃ is transformed
to Λ

´ 1
2

k UT
k X̃ which is a vector with identity covariance matrix. Therefore, this has now

transformed into a problem of case one or case two i.e. it is now a comparison of distances
or scaled distances.

Conclusion

In conclusion, QDA and LDA deal with maximizing the posterior probability of classes
but work with class conditionals and priors.

4.5 Fisher’s Discriminant Analysis
Fisher’s Discriminant Analysis or FDA is a supervised way of reducing the dimension
of the data.

Definition 4.7. Supervised learning is defined by the use of labeled datasets to train
algorithms to classify or predict outcomes accurately. The Bayes classifier that we first
observed along with the FDA procedure that we will now see are examples of supervised
learning. However, PCA is the example of un-supervised learning as the procedure does
not take into account the label information.

LDA, that we just discussed is a classification technique while FDA is a feature
extraction technique. Variables are also referred to as features or attributes.

Definition 4.8. Feature extraction is an attribute reduction process where the original
set of features are transformed to produce a smaller set of more meaningful features.

PCA and FDA are examples of feature extraction procedures. In this section, we
assume that only 2 classes exist while the data comes from Rd.

Aim:
Our aim is to find a direction/vector, ṽ , such that the following two properties are
followed.

1. The distance between the mean of the two classes is maximized.

2. Variance of the projected data, for each individual class, has to be minimized.

The figure 4.7 gives a simple example to understand FDA.
FDA is also a dimension reduction technique where we wish to learn a vector w̃

such that w̃T x̃ is a good representation of the data for classification.
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Figure 4.7: Illustration to understand FDA

Notation:

We assume n observations given by vectors x̃1, x̃2, ¨ ¨ ¨ , x̃n coming from Rd. Each vector
x̃i belongs to one of the two classes denoted by 0 and 1.

Sample mean of the data points coming from class 0 are denoted by pµ0 while the
sample mean of the other class is denoted by pµ1.

pµt “
1

nt

ÿ

ti|yi“tu

x̃i for i P t0, 1u

Let w̃ be an arbitrary direction in Rd. We want to find the w̃ which is good for s

Data Projected data
x̃ w̃T x̃
µ̃0 w̃T µ̃0

µ̃1 w̃T µ̃1

Σ0 w̃TΣ0w̃
Σ1 w̃TΣ1w̃

FDA, as mentioned earlier, involves two aims.

1. We wish to maximize the distance between the means of the projected data points.

max
w̃

“

pw̃T µ̃1 ´ w̃
T µ̃0q

T
pw̃T µ̃1 ´ w̃

T µ̃0q
‰

“ max
w̃

“

pµ̃1 ´ µ̃0q
T w̃w̃T pµ̃1 ´ µ̃0q

‰

“ max
w̃

 

tr
“

pµ̃1 ´ µ̃0q
T w̃w̃T pµ̃1 ´ µ̃0q

‰(

“ max
w̃

“

w̃T pµ̃1 ´ µ̃0qpµ̃1 ´ µ̃0q
T w̃

‰

“ max
w̃

“

w̃TSBw̃
‰

SB in the above simplification is called as the between class covariance matrix.
Therefore, the problem of maximizing the distance between the projected means is
equivalent to that of maximizing w̃TSBw̃ over all possible w̃ P Rd.

2. The next step is to minimize the variance of projected points within each class.

min
w̃

 

w̃TΣ0w̃
(

and min
w̃

 

w̃TΣ1w̃
(

(4.43)
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Since w̃TΣ0w̃ and w̃TΣ1w̃ are non-negative functions with respect to variable w̃,
problem in (4.43) is equivalent to minimizing the sum of the two functions. That
is, (4.43) is equivalent to

min
w̃
w̃T pΣ0 ` Σ1qw̃ “ min

w̃
w̃TSW w̃ (4.44)

The matrix SW is called within class covariance matrix.

To summarize, the problem of FDA is to find a direction w̃ such that

max
w̃

“

w̃TSBw̃
‰

and min
w̃

“

w̃TSW w̃
‰

(4.45)

The problem in (4.45) is equivalent to the following problem

max
A

w̃TSBw̃
w̃TSW w̃

where A “ tw̃|w̃TSW w̃ ‰ 0u (4.46)

We know that SB “ pµ̃1 ´ µ̃0q
T pµ̃1 ´ µ̃0q while SW “ Σ1 ` Σ0. Clearly, both SB and SW

are symmetric matrices. Therefore, (4.45) is the Rayleigh quotient of the symmetric
matrices SB and SW .

Let Rpw̃q “
w̃TSBw̃
w̃TSW w̃

The vector w̃ maximizing the function Rpw̃q can be calculated by differentiating Rpw̃q
with respect to w̃ and then setting it to 0.

d

dw̃
Rpw̃q “

2SBw̃pw̃TSW w̃q ´ 2SW w̃pw̃TSBw̃q
pw̃TSW w̃q2

“ 0 (4.47)

Further simplification of (4.47) is mentioned below:

SBw̃pw̃TSW w̃q “ SW w̃pw̃TSBw̃q ùñ SBw̃ “ λSW w̃ where λ “ Rpw̃q (4.48)

If d ă n, then SW is an invertible matrix. (???) Therefore, when d ă n

S´1
W SBw̃ “ λw̃

Therefore, the direction w̃ of our interest is an eigen vector of the matrix S´1
W SB.

Claim: S´1
W SB has exactly one non-zero eigen value. SB “ pµ̃0 ´ µ̃1qpµ̃0 ´ µ̃1q

T is
product of dˆ 1 vector and a 1ˆ d vector. Therefore, SB has rank one. Here we use the
fact that the rank of a pˆ q at most mintp, qu.

If P and Q are matrices of size pˆq and qˆr respectively then rankpPQ ď rankpPqq.
This result along with the fact that rankpSBq “ 1 implies that rankpS´1

W SBq “ 1.
The matrix S´1

W SB therefore has only one eigen vector (unique upto scaling). Denote
this eigen vector by ṽ.

S´1
W pµ̃0 ´ µ̃1qpµ̃0 ´ µ̃1q

T ṽ “ λṽ

The quantity µ̃0 ´ µ̃1q
T ṽ is a scalar. Call it “c”.

S´1
W pµ̃0 ´ µ̃1qc “ λṽ (4.49)

Since we are only interested in the direction of ṽ and not its magnitude, the following
follows from (4.49)

S´1
W pµ̃0 ´ µ̃1q 9 ṽ (4.50)
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Remark 4.4. 1. Observe that there is only one direction ṽ onto which our data has
to be projected in order to minimize the variance of each class while separating the
mean of the two class to the maximum extent.

2. It will be shown later that when the number of classes involved is k, then we would
project data on k ´ 1 different vectors.

3. S´1
W pµ̃0 ´ µ̃1q is estimated using the data we have in order to predict the direction
ṽ.
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Chapter 5

Classification and Regression Trees

The following chapter is based on [Ize08], [BFOS48], [TG21], [Sha48], [Chi19], and
[LM13]. The dataset has been taken from [DG17]

This chapter focuses on two specific tree based methods called classification trees
and regression trees. Classification tree construction is first discussed in detail, after
which regression trees are explained.

Classification tree, as the name suggests, is a supervised learning algorithm that helps
classify unlabelled objects. Regression trees, on the other hand, predict the value of a
continuous random value (i.e. response variable) based on a set of predictor variable
values.

5.1 Classification trees
I will first explain what a classification tree is with the help of an example before men-
tioning the actual precise definition of a classification tree.

The word “tree” in classification tree implies that it has the structure of a mathematical
tree that we know of from graph theory. Figure 5.1 gives the example of a classification
tree which is trying to classify individual patients into one of two classes - “High risk” or
“Low risk”. Each node is associated with a predictor variable whose support is partitioned
into two non-empty disjoint subsets. This partition corresponds to a binary split of
the predictor variable corresponding to each node. For instance, the root node of the
classification tree in 5.1 corresponds to the variable “Minimum systolic blood pressure
over the initial 24 hours”. Assuming that this variable is real valued, the root node is
split based on the partition of its support as p0, 91sYp91, 200s. Finally, each terminal node
is associated with a class label. Therefore, a unseen vector of data values corresponding
to a patient can be “dropped down” the tree to see which terminal node it ends up in.

Example 5.1. Let “Sys” denote the minimum systolic blood pressure variable, “A” denote
the age and “Sinus” be a binary random variable that takes values 0 or 1. 1 implies the
presence of sinus tachycardia while 0 implies the absence the same condition. Let the
data vectors observed be the realizations of the random vector Ṽ “ pSys,A, SinusqT .

• If the realization of the random vector Ṽ , for a given patient, is p106, 45, 0qT , then
he/she will be put under the “Low risk” category.

• However, the patient corresponding to the realization p101, 70, 1q will be considered
a “High risk” individual.

70



Figure 5.1: Example of a classification tree
taken from [OR]

4

Remark 5.1. 1. There can be more than one terminal node with the same class label.

2. More than one non-terminal node can be split based on the same predictor variable.

5.1.1 Classification trees partition the feature space

Let Y denote the random variable corresponding to the class labels while X̃ is a m ˆ 1
random vector consisting of m predictor variables of interest. Then the feature space is
defined as the support of the random vector X̃. In other words, it is all possible values
that the vector X̃ can take.

Consider the following example tree before going back to the tree in 5.1 that we earlier
used.

Example 5.2. Consider the classification tree mentioned in 5.2. The vector of predictor
variables is a two dimensional vector X̃ “ pX1, X2q

T . Terminal nodes are shown in red
while the non-terminal nodes are shown in blue. C1, C2, ¨ ¨ ¨C5 are assumed to be the five
possible classes. Then the terminal nodes are called a partition of data because of the
following reason.
Let Ci denote the set of all X̃ values for which X̃ belongs to Ci. We assume that θ1 ă θ3.

• C1 “ tpX1, X2q | X2 ď θ1 & X1 ď θ2u

• C2 “ tpX1, X2q | X2 ď θ1 & X1 ą θ2u

• C3 “ tpX1, X2q | θ1 ă X2 ď θ3 & X1 ď θ4u

• C4 “ tpX1, X2q | θ1 ă X2 ď θ3 & X1 ą θ4u

• C5 “ tpX1, X2q | X2 ą θ3u

Clearly, if the feature space is denoted by SupppX̃q, then by the way Ci has been defined
for each i “ 1, ¨ ¨ ¨ , 5, we have

SupppX̃q “ C1 Y C2 Y C3 Y C4 Y C5 (5.1)
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Figure 5.2: Example of a classification tree

Pictorially, the partition of the the feature space supppX̃q is as shown in Figure 5.3.
Clearly, the decision tree shown in 5.2 partitions the feature space as shown in 5.3.
Similarly, the decision tree 5.1, which has a 3-dimensional feature space, also partitions
its own feature space into non-empty disjoint sets. 4

Figure 5.3: Partition of the feature space

Example 5.3. Coming back to the classification tree 5.1, the feature space in this scenario
is 3-dimensional. The decision tree 5.1 leads to a partition of this 3-dimensional feature
space as well. 4

Remark 5.2. From the above examples, it clear that every classification tree induces a
partition of the feature space SupppX̃q. For obvious reasons, the set of all terminal nodes
are said to form a partition of the data.
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Points to note:

• We only consider the case of binary splits at each non-terminal node. If the predictor
variable Xi is continuous, then the node is split by partitioning the the support of
Xi into two parts. This is pictorially shown in Figure 5.4.

• If X is a real valued random variable, then all X̃ for which the value of X is less
than or equal to a real number v is sent to the left node while the rest of the
observations are sent to the right node.

• Finally, if X is a discrete random variable that can take one of the L possible values
in t1, 2, ¨ ¨ ¨ , Lu. Then a splitting of the node is induced by the partition of SupppXq
into any two non-empty subsets J and J 1. All observations X̃ whose corresponding
X value is one of those present in J will be sent to the left node while the remaining
observations go to the right node.

Figure 5.4: Partition of the feature space

The way the classification tree has been defined so far, it is clear that the classifica-
tion tree is a non-linear classifier with linear decision boundaries. The remaining
chapter will elaborate on how to construct a classification tree.

Figure 5.5

5.2 Definitions and notations
• X denotes the feature space i.e. the set of feature vectors. The vectors lying in X

are denoted by the symbol x̃.

• Each observation vector x̃ is amˆ1 vector i.e. we assume that there arem predictor
variables of interest.
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• C denotes the set of all possible class labels. Let the cardinality of this set be k i.e.
there exist k distinct classes.

• Let c : X ÝÑ C denote the ideal classifier.

• We assume that the number of observations noted is n. The set of all observed data
vectors is denoted by D.

• Each observation that we have is a labelled data point represented by the ordered
pair px̃, cpx̃qq. Here, the first co-ordinate represents the observed value while the
second co-ordinate represents its true class label.

D “ tpx̃1, cpx̃1qq, px̃2, cpx̃2qq, ¨ ¨ ¨ , px̃n, cpx̃nqqu

• A classification tree is generally denoted by T while any node of this tree is repre-
sented by τ .

• We will use τr to represent the root node of the tree T .

• X pτq is the set of all elements from X that fall into the node τ .
Consider for instance, the case of the continuous random variable X mentioned in
5.4. Denote the right and left daughter nodes by τR and τL respectively. Then,

X pτLq “ tX̃ | X ď vu and X pτRq “ tX̃ | X ą vu

• For a given node τ , npτq denotes the number of observations that fall into node τ .

• nipτq represents the number of observations from node τ that fall into class i.

Our aim:

Our aim is to find a function y : X ÝÑ C, using the data set D, such that y is not only
a decision tree but also a “good” approximation for c.

Definition 5.1 (Splitting of feature space). A splitting of X is a partitioning of X
into mutually exclusive non-empty subsets X1,X2, ¨ ¨ ¨ ,Xs such that

X “

s
ď

i“1

Xi and Xj X Xt “ φ for all j ‰ t

Splitting of the feature space induces a splitting of the example set D into the sets
D1,D2, ¨ ¨ ¨ ,Ds defined below.

D “

s
ď

j“1

Dj where Dj “ tpx̃, cpx̃qq | x̃ P Xju

Definition 5.2 (Decision Tree). Let X be the feature space whose splitting is as given
in Definition 5.1. If each Xi is assigned a class label, then the decision tree is called a
classification tree. However, if each Xi is assigned a real number, then it is called a
regression tree.
A tree T is called a classification tree for X and C if the following conditions hold.
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1. T is a finite tree i.e. it has a finite number of nodes.

2. T is a rooted tree i.e. it has a single unique root node.

3. Every node τ is associated with a set of features X pτq Ă X .

4. A splitting criteria ( w.r.t to a predictor variable ) exists at each non-terminal node
of the tree while each of its terminal node is assigned a class label or a real number
depending on whether T is a classification or a regression tree.

Definition 5.3. A partition of the feature space X induces a partition of the set of
observations D. We denote by Dpτq the set of all observations in D that fall into the
node τ .

Dpτq “ tpx̃, cpx̃qq P D | x̃ P X u

Remark 5.3. • Note that we only consider binary splits at each node. At each
non-terminal node, only one feature is measured.

• Every feature vector in X is associated with a unique path from the root of the tree
to the terminal nodes.

Since the definition of a decision tree is clear, the next step is to understand the
construction of classification trees and regression trees. In the case of a classification tree,
we are trying to predict a categorical variable Y using a vector of predictor variables X̃.
However, in the case of a regression tree, the response variable that we wish to predict
using X̃ is a continuous random variable. Note that the construction of a classification
tree is explained before that of a regression tree.

5.3 Node Splitting
The questions that come to our mind when we go through the definition of a decision tree
are: “How do we split a node?”, “Which split is the best split for a given node? How do we
define best?” etc. In this section, we first discuss about the number of all possible splits
a given node can have. After that, the procedure to select the “best” split is elaborated
in detail.

5.3.1 Number of possible splits

Let us first consider the root node τr. What are all the possible splits at this node τr? This
is the first question that we are going to deal with in this section. Predictor variables
involved are X1, X2, ¨ ¨ ¨ , Xm. Each of these variables can be any one of continuous,
discrete or categorical. Let the variable X be the variable being used to split a node τ .
We use the data set iris to make it easier to understand.

> data("iris")
> iris
> dim(iris)
[1] 150 5

> head(iris)
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Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

Case 1 - X is continuous:

I will use the iris dataset to explain how this case is dealt with. Consider the variable
“Petal width” for instance. Petal width is clearly a contiuous random variable. We have,
in the iris data set, 150 observations on petal width.

> iris$Petal.Width
[1] 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 0.2 0.2 0.1 0.1 0.2

[16] 0.4 0.4 0.3 0.3 0.3 0.2 0.4 0.2 0.5 0.2 0.2 0.4 0.2 0.2 0.2
[31] 0.2 0.4 0.1 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.3 0.3 0.2 0.6 0.4
[46] 0.3 0.2 0.2 0.2 0.2 1.4 1.5 1.5 1.3 1.5 1.3 1.6 1.0 1.3 1.4
[61] 1.0 1.5 1.0 1.4 1.3 1.4 1.5 1.0 1.5 1.1 1.8 1.3 1.5 1.2 1.3
[76] 1.4 1.4 1.7 1.5 1.0 1.1 1.0 1.2 1.6 1.5 1.6 1.5 1.3 1.3 1.3
[91] 1.2 1.4 1.2 1.0 1.3 1.2 1.3 1.3 1.1 1.3 2.5 1.9 2.1 1.8 2.2

[106] 2.1 1.7 1.8 1.8 2.5 2.0 1.9 2.1 2.0 2.4 2.3 1.8 2.2 2.3 1.5
[121] 2.3 2.0 2.0 1.8 2.1 1.8 1.8 1.8 2.1 1.6 1.9 2.0 2.2 1.5 1.4
[136] 2.3 2.4 1.8 1.8 2.1 2.4 2.3 1.9 2.3 2.5 2.3 1.9 2.0 2.3 1.8

For a given splitting conditionX ď v, the above values of petal widths will be divided into
two parts. Since v can be any real value, it appears as if there are infinitely many possible
splitting criterion while using the variable X. However, the number of observations, n,
and the number of 2 set partitions of the petal width values is finite. Therefore, it implies
that the number of possible splits at the node with respect to the variable X is finite as
well.

Instead of looking at all the infinite possible splitting criteria, it is enough to look
at splitting criteria of the form X ď v where v is an observed petal width value. The
number of distinct values that v takes is found out as shown below.

> petal.fac = as.factor(Petal.Width)
> levels(petal.fac)
[1] "0.1" "0.2" "0.3" "0.4" "0.5" "0.6" "1" "1.1" "1.2" "1.3"

[11] "1.4" "1.5" "1.6" "1.7" "1.8" "1.9" "2" "2.1" "2.2" "2.3"
[21] "2.4" "2.5"

This implies that although there are 150 independent observations noted for the petal
width, the observation values are all one of 22 distinct values. This implies that at the
root node, there are 22 possible splits with respect to the variable “Petal.Width”.

If the node we are working with is a non-terminal node τ , then instead of working
with Dpτrq “ D, we work with Dpτq and follow the procedure mentioned above.
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Case 2 - X is categorical:

Let us again consider the dataset “iris”. The variable “Species” is categorical. The three
levels of this variable are “setosa”, “versicolor” and “virginica”.

> levels(as.factor(Species))
[1] "setosa" "versicolor" "virginica"

Then the number of possible splits at a given node, with respect to this variable “Species”
is equal to the number of 2-set partitions of the set of all possible labels. If L “

t setosa , versicolor , virginica u. If L is partitioned into sets L1 and L2, then all the
observations whose “Species” variable is one of the elements of L1 will go to one daughter
node while the rest go to the other daughter node. All possible partitions of L is given
in the table below (unique upto swapping roles of L1 and L2).

L1 L2

t setosa u t versicolor , virginica u
t versicolor u t setosa , virginica u
t virginica u t setosa , versicolor u

Consider the general case where X can take one of L possible labels. Note that, L
stands for number of class labels. However, in the example earlier L represents the set of
all possible class labels.

The number of possible splits in the general scenario is equivalent to finding the
number of possible 2-set partitions of the set of all possible class labels. It is easy to
derive that the number of such 2-set partitions is

# 2-set partitions “ 2L´1
´ 1

Clearly, in this scenario, the same procedure is used to determine the number of possible
splits for both a terminal and a non-terminal node.

5.3.2 Determining the best split using impurity measures

In the previous subsection, we discussed about the number of possible splits at each node
with respect to a given variable. Now we answer the question of how to identify the best
split among all possible splittings at a given node. This problem is solved with the help
of a function called impurity function. Impurity functions are quantitative measures
of how “homogeneous” or “uniform” given node/nodes are.

Definition 5.4. Let p0, p1, ¨ ¨ ¨ , pk be points from a Euclidean space E “ Rd for some
d P N. Then the k-simplex in E with vertices tp0, p1, ¨ ¨ ¨ , pku is the convex set spanned
by p0, p1, ¨ ¨ ¨ , pk.

Notation: ∆k “

!

pα0, α1, ¨ ¨ ¨ , αkq P Rk`1 |
řk
i“0 αi “ 1 where αi ě 0@i

)

Consider a k-class problem. Then the impurity function, i, is a real-valued function
defined on ∆k´1. The variables involved are p1, p2, ¨ ¨ ¨ , pk. The impurity of a node τ is
given by ipp1, p2, ¨ ¨ ¨ , pkq where pi, for each given i, denotes the proportion of observations
in τ that belong to the ith class.

ipτq “ ipp1, p2, ¨ ¨ ¨ , pkq where pi “
nipτq

npτq
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Definition 5.5. For a k-class problem, the impurity function i : ∆k´1 ÝÑ R is a function
that follows the following criteria.

1. The function i is minimized at unit vectors e1, e2, ¨ ¨ ¨ , ek where ei is the unit vector
with 1 at the ith position and 0 at the remaining positions.

2. i is symmetric with respect to its arguments pi i.e.

ipp1, p2, ¨ ¨ ¨ , pkq “ ippσp1q, pσp2q, ¨ ¨ ¨ , pσpkqq for all σ P Sk

3. i is maximized at p 1
k
, 1
k
, ¨ ¨ ¨ , 1

k
q

It is important to understand why the impurity function i has to satisfy all the three
conditions mentioned in the definition above.

Evaluating impurity at ei implies that we are quantifying how “impure” the associated
node is. The vector ei as input implies that all the observations that have fallen into this
node are from the ith class. Since such node is “pure” or homogeneous, we would want
our impurity function to be minimized at all such e1is.

The reason why i must be symmetric can be understood with the help of an example.
Assume that we have two object A and B.

Object A - 30% gold + 70% copper

Object B - 30% copper + 70% gold

Clearly, if the input vector for object A is pp1, p2q “ p0.3, 0.7q then the input vector for
object B is p0.7, 0.3q where p1 is the proportion of metal in object while p2 is proportion
of copper. Clearly, irrespective of composition, the “purity” of both objects is same.
Therefore, the impurity function is assumed to be symmetric.

Finally, i is supposed to be maximum at p 1
k
, 1
k
, ¨ ¨ ¨ , 1

k
q since the equally likely scenario

is the most impure or uncertain scenarios that we can think of.

Example 5.4. Consider the following simple tree to understand how impurity function
parameters are evaluated. Let the root node of Figure 5.6 be denoted by τ while the left
and right daughter nodes are denoted by τL and τR respectively. Let b, y, g and r represent
blue, yellow, green and red balls. Since the node consists of 20 balls with 5 balls of each
colour. If the vector pp1, p2, p3, p4q are the paprameters required for impurity function,
then the parameters are the proportion of blue, green, yellow and red balls respectively.
Therefore,

• ipτq “ ip1
4
, 1

4
, 1

4
, 1

4
q

• ipτRq “ ip 3
10
, 2

10
, 5

10
, 0q

• ipτLq “ ip 2
10
, 3

10
, 0, 5

10
q

4

Now that we already know what an impurity function is, it is time to know about the
measure (based on impurity) that is used to determine the best split. This measure is
called impurity reduction.
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Figure 5.6: Example to under-
stand impurity function

Definition 5.6. Let τ denote the root node of a tree T while the terminal nodes of
this tree given by tτ1, τ2, ¨ ¨ ¨ , τLu. Then the impurity reduction, ∆ipτ, tτ1, τ2, ¨ ¨ ¨ , τLuq, is
given by

∆ipτ, tτ1, τ2, ¨ ¨ ¨ , τLuq “ ipτq ´
k
ÿ

j“1

npτjq

npτq
ˆ ipτjq (5.2)

The Definition 5.2 is the difference between the impurity of the root node and the
weighted average of the impurities of terminal nodes. In other words, it is the reduction
in impurity observed after splitting the root node to give the terminal nodes τ1, ¨ ¨ ¨ , τL.

Possible impurity functions

The two types of impurity functions that we will focus on are

1. Impurity based on miss-classification error. This impurity is defined as given in
5.3. Each pi denotes the proportion of observations in a given node that belong to
class i. Here, we assume that the class label that is highest in proportion is the
true/correct label while all the other observations (in the node) are miss-classified.

imisclpp1, p2, ¨ ¨ ¨ , pkq “ 1´maxtp1, p2, ¨ ¨ ¨ , pku (5.3)

2. Impurity based on entropy is given by the following formula. Note that pi have the
usual expected meaning defined earlier.

iHpp1, p2, ¨ ¨ ¨ , pkq “ ´
n
ÿ

i“1

pi logppiq (5.4)

The motivation behind this function is discussed in the following section.

Before delving further into the intuition behind these impurity functions, let us un-
derstand how these impurity functions are used to determine the best split at a given
node. Let us start with how the root node can be split.
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Splitting the root node

Let X̃1, X̃2, ¨ ¨ ¨ , X̃n be n observations with each observation belonging to one of the k
classes. If each X̃i is d-dimensional, it implies that there exist d variables, denoted by
V1, V2, ¨ ¨ ¨ , Vd. Consider the root node given in Figure 5.7. All the input elements can
be assumed to lie in the root node. Our aim is to find the best possible Vi and v to split
the node. The root node in Figure 5.7 is denoted by τ while the left and right daughter
nodes are denoted by τL and τR respectively.

We already know that the number of possible splits at a given node is finite with re-
spect to any continuous/discrete predictor variable. The following steps must be followed
to choose the best split.

1. Start with variable V1. Let there be s1 possible splits with respect to this variable.
For each of these s1 splits, calculate the corresponding impurity reduction. The
split with maximum impurity reduction is considered the best split with respect to
variable V1.

2. Repeat the above procedure for each of the d variables and note down the best
split, along with its impurity reduction, for each variable Vi. Let the best split at
τ with respect to Vi be denoted by Si.

3. Among all the splits Si, pick the slit which corresponds to maximum impurity
reduction. This split is considered the best split at the root node.

Figure 5.7: Splitting the root node

Remark 5.4. The same procedure can be followed for other non-terminal root nodes as
well. The only difference will be the number of observations X̃i associated with the node
under consideration.

5.3.3 Entropy as an impurity function

The motivation behind the impurity function imiscl is clear. However, using the functional
form of entropy as an impurity function is not intuitive. This subsection briefly explains
how entropy function was introduced and what role it plays in node splitting.

The concept of entropy was first introduced by the mathematician Claude Shannon in
a paper he wrote on communication systems. In this paper, he was attempting to quan-
tify the amount of information produced by a discrete information source. (A discrete
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information source is a source that produces a discrete sequence of symbols.) The follow-
ing is a brief and simplified summary of how Shannon arrived at the entropy function in
this paper.

Let X be a discrete random variable with n possible outcomes given by x1, x2, ¨ ¨ ¨ , xn.
Denote the probability PpX “ xiq “ pi for all i P t1, 2, ¨ ¨ ¨ , nu. If H : ∆k´1 ÝÑ R
is a function on pp1, p2, ¨ ¨ ¨ , pnq such that it measures the uncertainty associated with
a random variable X. Such a H, according to Shannon, must follow the properties
mentioned below.

1. H is a continuous function on the entire domain.

2. If p1 “ p2 “ ¨ ¨ ¨ “ pn “
1
n
, then H must be a monotonically increasing in n.

3. H must satisfy a certain law called the “composition law” which has been elaborated
later.

It is intuitively clear as to why the first two points have to be satisfied. The compo-
sition law mentioned has been given in detail below.

Let the possible outcomes be written as a disjoint union of M different sets Ci i.e.
tx1, x2, ¨ ¨ ¨ , xnu “ C1 Y C2 Y ¨ ¨ ¨ Y CM .

Let Ci “ tcpiq1 , c
piq
2 , ¨ ¨ ¨ , c

piq
ri
u i.e |Ci| “ ri@i

Let ppiqj for all j P t1, 2, ¨ ¨ ¨ , riu denote the probability PpX “ c
piq
j q for all j. Therefore

pp
piq
1 , p

piq
2 , ¨ ¨ ¨ , p

piq
ri q is the probability vector associated with events in Ci.

Let dpiql denote the probability of the event Cpiql occurring given that one of the events
in Ci has already occurred.

Let d̃i “ pd
piq
1 , d

piq
2 , ¨ ¨ ¨ , d

piq
ri
q where dpiql “ Ppcpiql occurred | one of events in Ci occurredq

Using the notations given so far, the following can be derived

1. 0 ď d
piq
l ď 1 for all possible i, l values.

2.
řn
l“1 d

piq
l “ 1 for all possible i.

3. ppiql “ d
piq
l ˆ zi where zi “ p

piq
1 ` p

piq
2 ` ¨ ¨ ¨ ` p

piq
ri

The following rule, which Shannon assumed H must follow, is called the composition
rule.

Hpp1, p2, ¨ ¨ ¨ , pnq “ Hpz1, z2, ¨ ¨ ¨ , znq `
M
ÿ

j“1

zjHpd
pjq
1 , d

pjq
2 , ¨ ¨ ¨ , dpjqrj q (5.5)

In the (5.5) rule given above is the mathematical formalization of: “Uncertainty associated
with the outcome ofX is equal to the sum of uncertainty associated in specifying which set
Ci the observation belongs to and uncertainty in specifying the specific outcome (within
Ci) the observation is.”

• Hpz1, z2, ¨ ¨ ¨ , znq is the term that quantifies the uncertainty in specifying which set
Ci the outcome belongs to.
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• The second term in (5.5), that is written under summation, quantifies the uncer-
tainty in specifying which cpiqj we are considering in Ci.

Shannon proved that the only function H that satisfies the conditions given in 5.3.3
is

Hpp1, p2, ¨ ¨ ¨ , pnq “ ´κ
n
ÿ

i“1

pi log pi for some κ ą 0 (5.6)

The functional form in (5.6) is therefore a function that can quantify the amount of
uncertainty associated with the outcome of a discrete random variable X.

For a continuous random variable X, the entropy is given by

Hpxq “

ż 8

´8

ppxq log ppxq where ppxq is the pdf ofX (5.7)

What does reduction in impurity imply when calculated with respect to en-
tropy function?

It is important to understand the entropy function further in order to answer this question.

Remark 5.5. Observe that the entropy of X, irrespective of whether it is discrete or
continuous, can be re-written as follows:

Hppq or HpXq “ ´EXrlogpppXqqs

Definition 5.7. Let pX, Y qT be a bi-variate random vector with pmf ppx, yq. Then its
joint entropy, H(X,Y), is given by

HpX, Y q “ ´EX,Y rlogpppX, Y qqs “ ´

ż

Y

ż

X
ppx, yq log ppx, yqdxdy (5.8)

Note that the integrals in (5.8) can be interchanged due to the Fubini-Tonelli’s theo-
rem.

Definition 5.8. The conditional entropy of X given Y is

HpY |Xq “ ´EX,Y rlogpppY |Xqqs (5.9)

Using the definition of conditional density, (5.9) can be simplified as follows:

HpY |Xq “ ´

ż

X
ppxqHpY |X “ xqdx where HpY |X “ xq “ ´

ż

Y
ppy|xq logpy|xqdy

(5.10)

Entropy HpY |Xq measures the uncertainty associated with experiment Y given tat
X has already been conducted. The result of experiment X is unknown. However, in the
case of HpY |X “ xq, the result of experiment X is known to be x.

Definition 5.9. Let X and Y be continuous variables with joint pdf denoted by ppx, yq
while marginal densities denoted by ppxq and ppyq respectively. Then the mutual infor-
mation between X and Y is given by

IpX;Y q “ EX,Y
„

log

ˆ

ppX, Y q

ppXqppY q

˙

(5.11)

82



Mutual information is a measure of the amount of information one variable has about
the other. In other words, it is a measure of the reduction in uncertainty regarding
one variable due to the knowledge of another. Using the definition of Kullback–Leibler
divergence, denoted by Dp¨||¨q, it can be shown that

IpX, Y q “ D pppx, yq||ppxqppyqq (5.12)

Since Dpp1||p2q of two densities p1 and p2 is a measure of how different the two densities
are. In other words, it quantifies information lost when p2 is used to approximate p1.
Therefore, IpX, Y q is a measure of how “far away” X and Y are from being independent.

Few properties of the function I(X,Y)

The proofs of these results can be found in the text book by Thomas and Cover.

1. IpX, Y q ě 0 follows from the theorem that the KL-divergence function is always
non-negative.

2. IpX, Y q “ 0 iff X K Y

3. IpX, Y q “ HpXq ´HpX|Y q “ HpY q ´HpY |Xq

Now we consider the important question that we posed earlier i.e. what does the
impurity reduction with respect to entropy quantify? With the help of an example, it
will be shown that impurity reduction with respect to entropy function is equivalent to
calculating HpXq ´HpX|Y q ( or HpY q ´HpY |Xq) which is nothing but the calculation
of IpX, Y q according to the properties given above. Observe that the calculation HpXq´
HpX|Y q (or HpY q´HpY |Xq) is nothing but the reduction in uncertainty associated with
X after the experiment Y has occurred.

Figure 5.8: Use of entropy as impu-
rity function

Example 5.5. Consider the example shown in Figure 5.8. Assume the existence of two
classes C1 and C2. The number of observations from each class is given in the figure.
Then the reduction in impurity for this triple is given by:

ipτq ´ pLipτLq ´ pRipτRq
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Then, ipτq is given by:

iHpτq “ ´
40

100
log

ˆ

40

100

˙

´
60

100
log

ˆ

60

100

˙

(5.13)

Define the following random variable:

Xτ “

#

1, with prob. 0.4

2, with prob. 0.6
(5.14)

Using (5.13) and (5.14), it is clear that

iHpτq “ HpXτ q (5.15)

Now define a random variable Y as follows:

Y “

#

1, with prob. pL “ 4
10

when Xj ą c

0, with prob. pR “ 6
10

when Xj ď c
(5.16)

Now the impurity associated with the two daughter nodes is given by:

iHpτLq “ ´
30

40
log

ˆ

30

40

˙

´
10

40
log

ˆ

10

40

˙

(5.17)

Clearly, the function in (5.17) is equivalent to P pY “ 0qHpXτ |Y “ 0q`P pY “ 1qHpXτ |Y “
1q. Therefore the weighted average of the daughter node impurities is equivalent to

pLiHpτLq ` pRiHpτRq “ HpXτ |Y q (5.18)

Using (5.15) and (5.18), it is clear that the calculation of impurity reduction for a given
triad of nodes is equivalent to calculating IpX, Y q “ HpXq ´HpX|Y q. 4

Simple and careful manipulations of the impurity function in general can be used to
prove the general result.

5.3.4 Entropy based impurity vs Mis-classification based impu-
rity

We have seen two impurity functions so far - the impurity based on mis-classification
error and the impurity based on entropy. While the former impurity function is more
intuitive, the latter impurity function has some nice mathematical properties that are
desirable for impurity functions.

Definition 5.10. A function f : D ÝÑ R is a concave function iff

fp
n
ÿ

i“1

λixiq ě
n
ÿ

i“1

λifpxiq when
n
ÿ

i“1

λi (5.19)

If the inequality in (5.19) is strict for all x1, x2, ¨ ¨ ¨ , xn P D, then the function f is called
strictly concave.
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It is desirable to have a strictly concave impurity function as it strict concavity is
equivalent to non-zero impurity reduction at each step.

Lemma 5.1. Strictly concave impurity function gives a strictly positive impurity reduc-
tion.

Proof. Let τ denote the parent node while τ1, τ2, ¨ ¨ ¨ , τs denote the terminal nodes of the
decision tree T . D, as mentioned earlier, denotes the set of all observations. Let Dj

denote the number of observations of D that fall into the jth terminal node of T . Let
Cj be the set of observations of D that belong to the jth class while Cpjqi denotes the
observations in Dj that belong to class i.

ipτq “ i

ˆ

|C1|

D
,
|C2|

D
, ¨ ¨ ¨ ,

|Ck|

D

˙

Each individual term |Cj |

|D|
can be simplified further as follows:

|Ci|

|D|
“
|Dj|

|D|
ˆ
|Ci|

|Dj|
“
|Dj|

|D|
ˆ

˜

|C
piq
1 | ` |C

piq
2 | ` ¨ ¨ ¨ ` |C

piq
k |

|Dj|

¸

(5.20)

Using (5.20), we can prove that:

|Ci|

|D|
“

s
ÿ

l“1

|Dl|

|D|
ˆ
|C
piq
l |

|Dl|

Now, the weighted impurity term associated with the jth terminal node is given by:

|Dj|

|D|
ˆ ipDjq “

|Dj|

|D|
ˆ i

˜

|C
pjq
1 |

|Dj|
,
|C
pjq
2 |

|Dj|
, ¨ ¨ ¨ ,

|C
pjq
k |

|Dj|

¸

Using the manipulations done so far, it is easy to deduce the following:

ipτq “ i

˜

s
ÿ

l“1

|Dl|

|D|
ˆ
|C
p1q
l |

|Dl|
, ¨ ¨ ¨ ,

s
ÿ

l“1

|Dl|

|D|
ˆ
|C
pkq
l |

|Dl|

¸

(5.21)

“ i

˜

s
ÿ

l“1

|Dl|

|D|

˜

|C
plq|
1

|Dl|
, ¨ ¨ ¨ ,

|C
plq|
k

|Dl|

¸¸

(5.22)

ą

s
ÿ

l“1

|Dl|

|D|
i

˜

|C
plq|
1

|Dl|
, ¨ ¨ ¨ ,

|C
plq|
k

|Dl|

¸

if i is strictly concave (5.23)

It is easy to show that (5.21) is equivalent to a strictly positive reduction in impurity.
Hence a strictly concave impurity is desirable.

Lemma 5.2. The impurity function based on miss-classification is concave but not strictly
concave. However, the impurity based on entropy is strictly concave.

Proof. Basic undergraduate mathematics can be used to prove this lemma.
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5.3.5 Assigning a class label to the terminal node

Although we haven’t yet discussed the complete construction of the decision tree, it is
useful to know how a class label is assigned to terminal nodes. Let the terminal node τ
have npτq observations in it. Let njpτq be the number of observations in τ that belong to
class j where j P t1, 2, ¨ ¨ ¨ , ku. Let τroot denote the root node. Then the class label (yi)
given to τi is:

yi “
k

argmax
j“1

rnjpτjqs (5.24)

The above rule (5.24) can be seen as an estimate of the Baye’s rule. If Ci denotes the set
of class i elements, then

Ppx̃ P Ci|x̃ P τq “
Ppx̃ P τ |x̃ P Ciq ˆ Πi

Ppx̃ P τq
where Πi “ Ppx̃ P Ciq (5.25)

The prior probability Πi and Ppx̃ P τ |x̃ P Ciq in (5.25) are estimated as follows:

pΠi “
nipτq

npτrootq
and pPpx̃ P τ |x̃ P Ciq “

nipτrootq

npτrootq
(5.26)

Using (5.25), (5.26) along with the fact that Ppx̃ P τq is constant gives the following
estimate for Ppx̃ P Ci|x̃ P τq:

yi “
k

argmax
i“1

Ppx̃ P Ci|x̃ P τq “
k

argmax
i“1

pPpx̃ P τ |x̃ P Ciq ˆ pΠi “
k

argmax
j“1

rnjpτjqs

Therefore, the rule described to assign class label to a terminal node can be derived using
the Bayes classifier.

5.4 Finding the tree that best describes the data
So far we have discussed how nodes can be split in order to “grow” a tree. The question
that this section will deal with is about how to find the best possible tree that describes
our data. This means that we must answer the question - How do we decide when to
stop splitting?

Building a tree by sequentially splitting the nodes of a tree is called recursive par-
titioning. If a binary tree is grown till none of the nodes can be split, then the resulting
tree is said to be saturated. The overall idea is to grow the tree to saturation and
then pruning the tree or chopping off “unecessary” branches until the “best” sub-tree
is obtained.

5.4.1 Notations

Let T be a tree with L terminal nodes denoted by τ1, ¨ ¨ ¨ , τL. Let the true proportion of
objects that get miss-classified in terminal node τi be denoted by Rpτiq. Since this true
value is mostly never known to us, it’s estimator rpτiq is given by:

rpτiq “ 1´
k

max
j“1

pppj|τiq where pppj|τiq “
njpτiq

npτjq
(5.27)
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Remark 5.6. The rpτiq has the same functional form as the impurity based on miss-
classification. Although the functional forms are the same, the impurity function has no
role to play in estimating Rpτiq.

Let all the terminal nodes of the tree T lie in the set T̃ i.e.

T̃ “ tτ1, τ2, ¨ ¨ ¨ , τLu

Then the miss-classification rate of the tree T , denoted by RpT q, is given by the weighted
average of all the Rpτiq values.

RpT q “
L
ÿ

l“1

RpτLqPpτLq where PpτLq “ prob. that obs. falls into τl (5.28)

RrepT q, called as the re-substitution error, is a possible estimator for RpT q defined
above. Using the estimates rpτlq and pppτlq “

npτlq
npτrootq

for RpT q and Ppτlq respectively gives
us:

Rre
pT q “

L
ÿ

l“1

rpτlq ˆ pppτlq “
L
ÿ

l“1

rpτlq ˆ
npτlq

npτrootq
“

L
ÿ

l“1

Rre
pτlq where Rre

pτlq “ rpτlq ¨
npτlq

npτrootq

Lemma 5.3. Let T be a tree with set of terminal nodes T̃ “ tτ1, τ2, ¨ ¨ ¨ , τL´1, τLu. T 1 is
a different tree with the terminals nodes T̃ 1 “ tτ1, τ2, ¨ ¨ ¨ , τL´1, τL1 , τL2u. In other words,
the tree T 1 is obtained from tree T by splitting (without loss of generality) the node τL
into τL1 and τL2. Then,

Rre
pT 1q ď Rre

pT q

Proof.

Rre
pT q “

#

L´1
ÿ

l“1

rpτlqpppτlq

+

` rpτLqpppτLq (5.29)

Rre
pT 1q “

#

L´1
ÿ

l“1

rpτlqpppτlq

+

` rpτL1qpppτL1q ` rpτL2qpppτL2q (5.30)

Comparing RrepT q and RrepT 1q is therefore equivalent to comparing the terms rpτLqpppτLq
and rpτL1qpppτL1q ` rpτL2qpppτL2q respectively. Let θ be the number of observations in τL2

while n denotes the total number of observations.‘
2
ÿ

i“1

Rre
pτLiq “ rpτL1qpppτL1q ` rpτL2qpppτL2q

“ rpτL1q ¨

„

npτLq ´ θ

n



` rpτL2q ¨

„

θ

n



“ r

˜

|C
p1q
1 |

npτLq ´ θ
, ¨ ¨ ¨ ,

|C
p1q
k |

npτLq ´ θ

¸

¨

„

npτq ´ θ

n



` r

˜

|C
p2q
1 |

θ
, ¨ ¨ ¨ ,

|C
p2q
k |

θ

¸

¨

„

θ

n


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Using the concavity of r, the above equation can be simplified as

n

npτLq

«

2
ÿ

i“1

Rre
pτLiq

ff

ď r

˜

"

npτLq ´ θ

npτLq

*

ˆ

˜

|C
p1q
1 |

npτLq ´ θ
, ¨ ¨ ¨ ,

|C
p1q
k |

npτLq ´ θ

¸

`

"

θ

npτLq

*

ˆ

˜

|C
p1q
1 |

θ
, ¨ ¨ ¨ ,

|C
p1q
k |

θ

¸¸

(5.31)

“ r

ˆ

|CτL
1 |

npτLq
, ¨ ¨ ¨ ,

|CτL
k |

npτLq

˙

(5.32)

Now the term rpτLqpppτLq can be simplified as:

rpτLqpppτLq “ rpτLq ˆ
npτLq

n
“ r

ˆ

|CτL
1 |

npτLq
, ¨ ¨ ¨ ,

|CτL
k |

npτLq

˙

ˆ
npτLq

n
(5.33)

Using (5.31) and (5.33), it is clear that

Rre
pτL1q `Rre

pτL2q ď Rre
pτLq

This proves the lemma.

One of the well-known properties of a concave function is given below without proof.

Proposition 5.1. Let φ : D ÝÑ R be a concave function on the domain D Ă Rd. Let αi
for i P t1, 2, ¨ ¨ ¨ , nu be such that

řn
i“1 αi “ 1 and suppose that x̃i for i P t1, 2, ¨ ¨ ¨ , nu be

points in D, then φ is concave iff

φp
n
ÿ

i“1

αix̃iq ě
n
ÿ

i“1

αiφpx̃iq (5.34)

Equality in above inequality (5.34) holds iff x̃1 “ x̃2 “ ¨ ¨ ¨ “ x̃n (OR) φ is linear on D.

From the Proposition 5.1, it is easy to derive that RrepτL1q`RrepτL2q “ RrepτLq holds
iff

|C
p1q
i |

npτL ´ θq
“
|C
p2q
i |

θ
for all i P t1, 2, ¨ ¨ ¨ , ku

From the definition of RpT q, it seems that RpT q must be as low as possible. However,
Lemma (5.3) implies that RpT q value is the least for T “ Tmax where Tmax is the tree T
grown upto saturation.

A saturated tree is a tree whose nodes cannot be split further. Generally, a number
nmin is decided before hand. Once the number of observations falling into a node is less
that nmin for the first time, then we stop splitting that node. Once every node has less
than nmin observations, the tree is said to be saturated.

The tree that best describes the data or the tree which we wish to find is a subtree
of Tmax which minimizes a suitable estimate for RrepT q.

Minimizing RrepT q in order to identify the best subtree is flawed as RrepT q is always
minimized at T “ Tmax. The tree Tmax is very likely to overfit the date at hand. Similarly,
a tree that is not “split enough number of times” can underfit the data. Therefore,it is
unwise to useRrepT q to identify the “best” tree that describes the data. Since the intuitive
RrepT q doesn’t work, we use a different estimate of the error RpT q in order to find the
best possible subtree.
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RαpT q “ Rre
pT q ` α|T̃ | (5.35)

α0 in the above estimate forRpT q is called as the complexity parameter. The penalty
term ensures that the tree T Ă Tmax which minimizes the error estimate RαpT q is neither
“too big” nor “too small”.

For each α, let T pαq denote the subtree of Tmax that minimizes RαpT q.

T pαq “ arg min
TĂTmax

RαpT q (5.36)

T pαq that satisfies equation (5.36) s called the minimizing subtree. It is also called as
the optimally pruned subtree of Tmax.

Remark 5.7. Note that T pαq for a given α is not unique. How to get around this
problem is discussed later.

The relationship between α value and optimal tree “size” is summarized below. The
word “size of a tree” is vague. However, for now the size of the tree can be seen as number
of nodes and branches. Tree with greater number of nodes and brances is bigger in size.

1. When α is close to zero, the penality α|T̃ | is small. So the dominant term in RαpT q
is RrepT q. Hence the minimizing subtree is “bigger” in size. When α “ 0, then the
minimizing subtree is Tmax.

2. On the other hand, if α is large, then α|T̃ | is the dominant term in RαpT q. Hence
the minimizing subtree is “smaller” in size. For all α which are “sufficiently large”,
the minimizing subtree is τroot i.e. tree consisting of the root node alone.

Therefore, as α value increases the number of nodes in the optimal subtree T pαq reduces
i.e. we prune the tree Tmax upwards.

The number of possible subtrees of a given tree is finite, therefore the set of all possible
α values can be partitioned into intervals r0, α1sYpα1, α2sY¨ ¨ ¨ rαM ,8q such that T pαiq is
the optimal subtree for all α P pαi´1, αis. One of these M ` 1 optimal subtrees is the tree
that best describes our data. Remaining chapter focuses on how a classification tree is
constructed for a given data set D. The nodes of the tree Tmax are pruned systematically
to get the “best” decision trees T pαiq.

When the value of α gradually and continuously increases from 0, the output value
the function arg minTĂTmax RαpT q is a continuous step function. Let α1 and α2 be two
possible α values such that α1 ă α2. Then,

Rα1pT q “ Rre
pT q ` α1|T̃ | and Rα2pT q “ Rre

pT q ` α2|T̃ |

Additional, consider the following notations as well:

Rpαiq “ min
TĂTmax

RαipT q and T pαiq “ arg min
TĂTmax

RαipT q for i P t1, 2u
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5.5 Constructing a sequence of minimizing subtrees
As mentioned earlier, as α value is gradually increased, the branches of the corresponding
minimizing subtree are chopped off. The construction of this sequence of subtrees and
corresponding α values is shown in this section. The next section will focus on determining
the best pruned subtree among the sequence of constructed optimal subtrees.

Using the notation Ti for T pαiq, a sequence of trees T1, ¨ ¨ ¨ , TM are constructed as
shown below. Note that TM stands for τroot while T0 stands for Tmax. This is represented
pictorially in 5.9.

Figure 5.9: Optimal subtrees and α values

Before looking at the construction of T1, let us first focus on Tmax i.e. the optimal
subtree for α P r0, α1q. Without loss of generality, Tmax can be considered as the smallest
subtree T 1 of Tmax for which RrepTmaxq “ RrepT 1q hold. It makes sense to use this
condition as we have to start with the value α “ 0. The smallest optimal subtree T 1
satisfying R0pTmaxq “ R0pTmaxq will remain the optimal subtree until some value of α,
say α1. Additionally, it is easy to show that finding the smallest subtree of Tmax that
satisfies the condition RrepTmaxq “ RrepT 1qis equivalent to chopping the daughter nodes
τ1 and τ2 that satisfy the following equation with respect to their parent node τp.

Rre
pτpq “ Rre

pτ1q `Rre
pτ2q

Now that we have Tmax, we will now consider the construction of T1 from Tmax. In
order to understand the construction of T1, we must understand the concept of “weakest
link node”.

5.5.1 Weakest link node

We will understand the concept of weakest link using a tree T . This will later be applied
to the tree T1 that we were discussing about. Let τ be a non-terminal node of the tree T .
Denote by Tτ the maximal subtree of T with τ as its root node. Let the terminal nodes
of Tτ be given by T̃τ “ tτ 11, ¨ ¨ ¨ , τ 1Lτ u. Then,

Rre
pTτ q “

ÿ

τ 1PT̃τ

Rre
pτ 1q where Rre

pτ 1q “ rpτl1q ˆ ppτl1q

Lemma 5.4. For trees T , Tτ mentioned above, the following is satisfied.

Rre
pTτ q ă Rre

pτq
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Proof. Using the lemma 5.3, it is clear that RrepTτ q ď Rrepτq holds. This is true because
τ can be treated as a trivial subtree of Tτ . We are left to show that the inequality
is always strict. Assume on the contrary that RrepTτ q “ Rrepτq holds. Let the splits
s1, s2, ¨ ¨ ¨ , sg be required to split the node τ to create Tτ . This can be represented as
follows for simplicity:

T0 “ τ
s1
ÝÑ Ts1

s2
ÝÑ Ts2

s3
ÝÑ ¨ ¨ ¨

sg
ÝÑ Tsg “ Tτ (5.37)

By the property of Rre, the following holds

Rre
pτq ě Rre

pTs1q ě ¨ ¨ ¨ ě Rre
pTτ q (5.38)

However, using the assumption RrepTτ q “ Rrepτq along with the inequality 5.38, a con-
tradiction can be arrived at in the following manner:

T̃g “ tτ1, τ2, ¨ ¨ ¨ , τlτ´1, τlτ u and T̃g´1 “ tτ1, τ2, ¨ ¨ ¨ , τlτ´2, τl,l´1u

In other words, the node τl,l´1 of Tg´1 was split into two nodes - τlτ´1, τlτ - to give rise
to the tree Tg. Simple manipulations can show that the assumption of RrepTτ q ă Rrepτq
gives the conclusion:

Rre
pτl,l´1q “ Rre

pTτl,l´1
q (5.39)

The equality in 5.39 gives a contradiction as the tree we are working with is assumed to
be the tree which no node tuples following equations of the kind in (5.39).

Theorem 5.1. The following statements are equivalent.

1. The tree T describes the data better than T zTτ .

2. RαpT q ă RαpT zTτ q

3. RαpTτ q ă Rαpτq

4. α ă
Rre
τ ´Rre

Tτ

|T̃τ | ´ 1

Proof. The three statements above can be proved easily by using the definitions of the
function Rα.

Although the proof of Theorem 5.1 is pretty straightforward, the information the
theorem provides is extremely crucial for the construction of the sequence of optimal
subtrees.

The theorem 5.1 states that the tree T better describes the data T zTτ iff RαpTτ q ă
Rαpτq holds. Additionally, RαpTτ q ă Rαpτq will hold or T will be better than T zTτ if

and only if α ă
Rre
τ ´Rre

Tτ

|T̃τ | ´ 1
holds.

Keeping the Theorem 5.1 in mind, we can now try to understand the concept of
weakest link node.
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Definition 5.11. Let T be a tree with terminal nodes T̃ “ tτ1, τ2, ¨ ¨ ¨ , τLu. Let the
non-terminal nodes be denoted by T̃C Then denote by gpτq

gpτq “
Rre
τ ´Rre

Tτ

|T̃τ | ´ 1
(5.40)

Then the weakest link node τ̃ is defined as follows:

τ̃ “ arg min
τPT̃C

gpτq (5.41)

Start with tree Tmax. For all values of α in r0, α1q, Tmax is the optimal subtree. From
α “ α1 onwards, a subtree of Tmax, call it T1, is the optimal subtree. The question is how
do we find this tree T1 and the alpha value.

Each non-terminal node τ of the tree has an α value after which the associated Tτ
can be chopped off. However, the non-terminal node with smallest alpha value will be
the one whose Tτ will be chopped off first as α is gradually increased. The alpha value
and its corresponding node are denoted by α1 and τ1. Since Tτ1 corresponding to τ1 is
the first to be chopped off, τ1 is called the weakest link node. The same procedure of
finding the weakest link node is repeated for the tree T1 to give rise to α2 and T2. This
procedure is continued till we find an αM after which τroot is the best tree. Hence this
process creates a sequence of α values and trees as written below and as shown in Figure
5.10:

0 “ α0 ă α1 ă ¨ ¨ ¨ ă αM´1 ă αM

Tmax “ T0 Ą T1 Ą ¨ ¨ ¨ Ą TM´1 Ą TM “ τroot

Figure 5.10: Tree Pruning

We earlier addressed the problem of non-uniqueness of optimal subtrees for a given α
value. This problem is solved by looking for smallest minimizing subree of the tree of
interest. It can be proved that smallest minimizing subtree always exists and it is unique.

Definition 5.12. Fix an α value and a tree T. Let the minimizing subtree be denoted by
T pαq. The smallest minimizing subtree Tsm is the subtree of T that satisfies the following
two conditions.
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1. Tsm is minimizing subtree of T .

2. If T 1sm is any other minimizing subtree, then Tsm is a subtree of Ts.

It can be proved that the smallest minimizing subtree always exists and it is unique
for a given tree. The proof of this statement has not been provided in this chapter. This
then solves the problem of having non-unique optimal subtrees for a given α value.

5.5.2 The best pruned subtree

Now that we have a sequence of subtrees where each subtree is the smallest minimizing
subtree, we have to find a way to find the best pruned subtree among the set of all
possible subtrees.

We consider the method of using independent test sample. If D denotes the
entire set, then divide the set into two subsets - L will be the learning set or the training
set while T will be the testing set such that |L| “ nL and |T | “ nT . We assume that
the observations in the test set are drawn independently from those in L. The following
procedure is used to find the best pruned subtree.

• Use the learning set L to grow a sequence of trees as described earlier.

• Now drop the nT test set observations down each of the trees in the sequence.

• For each tree in the sequence, calculate the proportion of observations that were
miss-classified.

• Best pruned subtree is the one with least miss-classification error.

Although this methods works well for large data sets, this might not be a good ap-
proach for small data sets. Additionally, the other problem lies in the fact that our final
answer depends on how the data set was divided into learning and testing sets. Not using
the elements of T to construct a tree implies loss of important information.

5.6 Data Analysis
In this section, we put into use the classification tree construction technique in order to
differentiate fake notes from original notes. The dataset has been taken from the UCI
machine learning repository.

The data set we use is found as the “data_banknote_authentication” data set at the
UCI machine learning repository. It is a dataset of dimension 1371 ˆ 5. The first four
variables represent different properties of fake and original banknotes. These four variable
values were computed using a wavelet transform tool. The four variables are continuous
and denoted as follows:

1. "var" - variance of Wavelet Transformed image

2. "skew" - skewness of Wavelet Transformed image

3. "kurt" - kurtosis of Wavelet Transformed image

4. "entropy" - entropy of image
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The fifth variable denotes the class label. "Class" variable takes one of the two values - 0
or 1. However, I could not find information regarding which variables implies a fake note
and which one implies a real note. Let us assume for now that all notes with label1 are
real while all those with label 0 are fake.

> names(data_banknote_authentication)
> colnames(data_banknote_authentication) = c("var", "skew", "kurt", "entropy", "class")
> dim(data_banknote_authentication)
[1] 1372 5

> fac = as.factor(data_banknote_authentication[,5])
> table(fac)
fac

0 1
762 610

Therefore there are 762 fake notes and 610 real notes included in this dataset. This
dataset, as mentioned in this chapter, must be divided into two parts - testing set and
training set. It makes sence to approach this method as number of data points we have
is sufficiently large. We divide the entire set into two subsets. The subset “train” denotes
the training set while the set “test” denotes the testing set.

> test = data_banknote_authentication[753:772,]
> dim(test)
[1] 20 5
> train = data_banknote_authentication[-c(753:772),]
> dim(train)
[1] 1352 5

Now that we have a clear testing and a training set, use the function “rpart()” from the
library “rpart” to construct a decision tree. Note that we use entropy function to split
the nodes. The tree that we get after running the code is shown in figure 5.11

> library(rpart)
> tree = rpart(class ~., data = train, method = "class", parms = list(split = "information"))
> plot(tree)
> text(tree)

Running the code associated with the function rpart() gives the following result.

> tree
n= 1352

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 1352 600 0 (0.556213018 0.443786982)
2) var>=0.320165 704 75 0 (0.893465909 0.106534091)

4) var>=1.7907 474 5 0 (0.989451477 0.010548523) *
5) var< 1.7907 230 70 0 (0.695652174 0.304347826)
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Figure 5.11: Classification tree to classify real and fake notes

10) kurt>=-2.2722 173 16 0 (0.907514451 0.092485549) *
11) kurt< -2.2722 57 3 1 (0.052631579 0.947368421) *

3) var< 0.320165 648 123 1 (0.189814815 0.810185185)
6) skew>=5.86535 135 39 0 (0.711111111 0.288888889)
12) var>=-3.4449 95 0 0 (1.000000000 0.000000000) *
13) var< -3.4449 40 1 1 (0.025000000 0.975000000) *

7) skew< 5.86535 513 27 1 (0.052631579 0.947368421)
14) kurt>=6.21865 153 25 1 (0.163398693 0.836601307)

28) skew>=-4.6745 25 1 0 (0.960000000 0.040000000) *
29) skew< -4.6745 128 1 1 (0.007812500 0.992187500) *

15) kurt< 6.21865 360 2 1 (0.005555556 0.994444444) *

The line written against 1q gives information about the root node or the first node.
The root node has no split criteria defined yet. The line mentions that there are 1352
observations in the data set.

> factor = as.factor(train[,5])
> table(factor)
> factor

0 1
752 600

The code above lets us know that there are 752 fake and 600 real notes at the root node.
Therefore, we would have to assign the class label 0 to this node as majority of the
data points in the node are of class 0. This information has been suggested in the line
written against “1)” in the code output given above. The word “root” under the variable
“split” suggests that it is a root node and therefore no splitting criteria has been defined
yet. However, in the remaining lines a splitting criterion is mentioned under the variable
“split”. The variable “n” in the code is the value npτrootq i.e. the number of observations
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associated with the root node. The variable “loss” gives the number of observations
that we consider miss-classified. Since 600 ă 752, we assume the 600 points to be mis-
classified (since the node is assigned the class label 0). The variable “yval” is nothing but
the class label i.e.0 or 1. The numbers given in the bracket are the proportion of points
that belong to each class for a given set of points associated with a node. Observe that
the proportions mentioned in the first line are 0.556213018 and 0.443786982 which are
nothing but 752

1352
and 600

1352
respectively. Observe the indentation in the lines of the code

output and the graph in 5.11. Then it can be observed that the indentation in the output
gives information about the structure of the final tree.

Now that we have constructed a tree, we must check how well the tree works with
respect to the testing data. This is done using the “predict()” function found in the rpart
package. Note that the serial numbers given in the output below is the serial number of
the data point in the original dataset.

> predict(tree, test)
0 1

753 0.907514451 0.09248555
754 0.989451477 0.01054852
755 0.989451477 0.01054852
756 0.989451477 0.01054852
757 0.989451477 0.01054852
758 0.989451477 0.01054852
759 0.989451477 0.01054852
760 1.000000000 0.00000000
761 0.989451477 0.01054852
762 0.989451477 0.01054852
763 0.005555556 0.99444444
764 0.907514451 0.09248555
765 0.007812500 0.99218750
766 0.007812500 0.99218750
767 0.007812500 0.99218750
768 0.005555556 0.99444444
769 0.005555556 0.99444444
770 0.005555556 0.99444444
771 0.907514451 0.09248555
772 0.005555556 0.99444444

The true class labels of these 20 testing points can be obtained using the original
dataset. The output below suggests that the first ten data points correspond to a fake
note while the last ten data points correspond to real notes.

> data_banknote_authentication[753:772, 5]
[1] 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

Comparing this with the outcome that we got using our decision tree, we observe that
all the fake notes were correctly classified as being fake. However two of the real notes
have been miss-classified as being fake. These incorrectly classified observations are the
764th and 771th observations of the original data set. This implies that 90% of the test
set observations were classified correctly which means that the tree can act as a good
classifier.
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Chapter 6

Artificial Neural Networks

The following chapter is based on [RS20], [Roj96], [BN12], [Kha19], and [Ize08]. The
dataset has been taken from [DG17].

This chapter focuses on “Artificial Neural Networks” which is one of the many clas-
sification tools that we know of so far. The name “artificial” neural network comes fact
that this theory was first developed in an attempt to model how the neurons in human
brain work. Nowadays, however, ANNs are dealt with in a more abstract fashion. This
chapter focuses on how a particular type of ANN can be constructed, using a training
set, to solve classification problems. We first look at how biological neurons inspired the
first artificial neuron models. My inherent interest in biology, made me quite inclined to
include a section on the biological inspiration behind ANNs.

6.1 Biological Neurons inspired Artificial Neurons

6.1.1 Biological neurons and neural networks

In this section, we focus on how biological neurons work and how the function of these
network of neurons inspired the first mathematical neuron model.

Figure 6.1: Structure of a biological neuron (©The Alcohol Pharmacology Education
Partnership)

Coordination between billions of neurons in the brain is the reason why we are able to
sense, move, feel emotions and much more. In order to execute these functions, our brain
uses an extensive networks of neurons to rapidly communicate via electrical signals. Each
neuron comprises a cell body, dendrites, axon and axon terminals as shown in Figure 6.1.
An electrical impulse (action potential) is generated in the cell body which propagates
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along the axon to the axon terminal. The electrical impulse in the axon terminal of one
neuron is relayed onto another adjacent neuron through the dendrite-terminal bridge as
shown in 6.2. This terminal-dendrite connection between two neurons is called a synapse.
Therefore, dendrites receive the inputs while the axon terminals receive the output. A
given neuron can send and receive signals to multiple neurons as both dendrites and
axon terminals are connected to several other neuron’s axon terminals and dendrites
respectively.

Now that we have some understanding of how neurons communicate, it is useful
to know about action potential. Action potential is a temporary change in neuron’s
membrane potential that is caused due to external stimulus. A neuron “fires” or sends
the electrical message/signal to the next neuron only if the change in membrane potential
crosses a certain threshold value of ´55mV. The neuron returns to its resting state if
the stimulus or change in membrane potential is not strong enough. Interestingly, the
strength of the action potential is always the same irrespective of how severe or mild the
stimulus is. However, a weak stimulus triggers a less frequent action potentials while
intense stimuli trigger more frequent action potentials. Signals that a neuron receives
can either be excitatory or inhibitory. As the name suggests, these signals change the
membrane potential in a direction that is either towards or away from the fixed threshold
value of ´55mV.

Figure 6.2: Communication between neurons (©Khan Academy)

6.1.2 Artificial neurons

Now that we understand how a biological neuron works, the statistical model of a neuron
will appear to be obviously defined based on how the neurons work. This section is
devoted to given a brief introduction to artificial neurons. Various terminology related
to ANNs will also be introduced in this section. Artificial neural networks are statistical
models that are used to solve classification problems. Therefore ANNs, like decision trees,
are one of the possible classifier options we have. Although ANNs can be used to solve
regression problems, we focus only on ANN based classification in this chapter.

ANNs,just like decision trees, are trained using a set of labeled observations i.e. ANN
is a supervised learning algorithm. We first look at what constitutes a single neuron. We
then look at how a network of such single neurons work.

6.1.3 Single neuron

An individual neuron or computing unit consists of n input nodes. This implies that
each observation X̃ P Rn.The circle in 6.3 plays the role of the cell body and axon
i.e. transmit the information received at the “dendrites”. Dendrites here are the arrows

98

https://www.khanacademy.org/science/biology/human-biology/neuron-nervous-system/a/the-synapse


Figure 6.3: An artificial neuron

pointing into the circle. The label Y given at the end is the output we get after the
input is processed in the neuron. The “processing” of the input is done by the two
functions Σ : Rn ÝÑ R and σ : R ÝÑ R. Σ adds up all the weighted inputs w1 ˆ

X1, w2 ˆX2, ¨ ¨ ¨ , wn ˆXn while σ acts as a normalizer. Since the input values can vary
in magnitudes depending on which scale they are measured on. Therefore, σ is used to
normalize the sum of input values to some value between 0 and 1 or between ´1 and 1.
σ is also called as the activation function.

In conclusion, the “processing” that happens in the neuron can be summed up as
follows:

px1, x2, ¨ ¨ ¨ , xnq ÞÑ w1x1 ` w2x2 ` ¨ ¨ ¨ ` wnxn ÞÑ σ

˜

n
ÿ

i“1

wixi

¸

Activation functions must be bounded, continuous, monotonic and continuously dif-
ferentiable with respect to the vector of weights w̃. The activation function must be
bounded because it normalizes input sums. On the other hand the conditions of continu-
ity and differentiability are useful for optimization purposes. Monotonicity is important
because activation functions are a measure of how negative or positive the sum of in-
puts is. Activation functions are sometimes continuous functions but not differentiable
as well. One of the examples of such an activation function is the step function at origin
i.e. σpxq “ Ixě0 where I stands for indicator function.

Some commonly used continuous and differentiable activation functions are:

1. σ : R ÝÑ r0, 1s such that

σpxq “
1

1` e´x
(6.1)

2. σ : R ÝÑ r´1, 1s such that

σpxq “
2

π
arctanpxq

3. σ : R ÝÑ r´1, 1s such that

σpxq “
ex ´ e´x

ex ` e´x
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However, the most commonly used activation function is the sigmoid function, i.e. the
one in (6.1). Sigmoid function is a measure of how positive or negative the sum of inputs
is. The graph of each of these activation functions is provided in 6.4. The activation
function we use throughout this chapter is the sigmoid function unless otherwise stated.

Figure 6.4: (a)The sigmoid function, (b)The arc-tangent func-
tion, (c)The hyperbolic tangent function [Reference: [BN12]]

The weights wi are a measure of the frequency or strength with which an input message
xi is received. Every individual neuron is also associated with a threshold θ, just like in
the case of a biological neuron, only after which the neuron fires. This threshold is called
as the bias of the neuron. Once the inputs x1, x2, ¨ ¨ ¨ , xn are entered into the neuron for
processing, the first step involves the Σ function calculating the weighted sum

řn
i“1wixi.

The bias θ is then subtracted from the weighted sum before using it as an input for the
function σ. This bias θ is a measure of the minimum value the weighted sum can take.

px1, x2, ¨ ¨ ¨ , xnq
T Σ
ÝÑ

n
ÿ

i“1

wixi ÝÑ
n
ÿ

i“1

wixi ´ θ
σ
ÝÑ σ

˜

n
ÿ

i“1

wixi ´ θ

¸

Let us assume that the weighted sum of all the inputs have to be at least 10 to consider
the stimulus/signals to be strong enough. Then we choose θ “ 10. Subtracting θ “ 10
from each data point would give us a measure of high or low the combined signal strength
is with respect to 10. In other words, we are shifting the co-ordinates such that the real
number 10 is now the origin of the real line.

6.1.4 Artificial Neural Network

Just like a network of biological neurons work in coordination, a network of artificial
neurons, called as artificial neural networks are used to address classification problems.
Several different types of ANNs have been defined in the literature so far. However, the
ANN we will focus on is a most frequently used ANN called feed-forward multilayer
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perceptron or MLP in short. The pictorial representation of the MLP is given in Figure
6.5.

Figure 6.5: Feed-forward multi-layer perceptron taken from [BN12]

As the name suggests, MLP is a neural network that is organized in “layers”. Each
layer is group of nodes that processes the inputs it gets and gives an output. These
outputs act as inputs to the next layer of nodes. Hence the nextwork is layered and
feeds forward. The first layer of nodes is called the input layer. This is called a
“layer” although the inputs are taken in as they are without any processing. The last
layer of nodes which produces the estimated class label is called the output layer. All the
other layers inbetween input and output layers are called hidden layers. The number of
nodes present in different layers can be different as shown in Figure 6.5. The complexity
of a neural network is based on the choice of number of hidden layers and the number of
nodes in each hidden layer.

6.2 The Classical Perceptron
In the previous section we focused on understanding the structure of the feed-forward
multilayer perceptron (MLP) and how biological neural networks inspired the modelling
of the MLP. Now, we take a step back to look at the artificial neural network models
that were proposed before the MLP and how these earlier models were modified to give
the model that is often used today.

6.2.1 McCullough-Pitts neuron

The first mathematical model of how an individual neuron works was proposed by two
people - Warren McCullough and Walter Pitts. The single neuron model they proposed,
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also called as the McCullough-Pitts neuron (or MP neuron), has the structure as shown
in 6.7.

• The MP neuron takes in binary inputs and gives out binary outputs.

• The MP neuron is unweighted.

• Each neuron is associated with a threshold or bias θ.

• The activation function here is the step function at θ i.e. σpxq “ Ixěθ. Choice of
activation function ensures that the neuron outputs binary values only i.e 0 or 1.

• The neuron is said to fire when the neuron outputs 1.

• Each input signal is either an excitatory signal or an inhibitory signal.

• Let the inputs e1, e2, ¨ ¨ ¨ , em1 be m1 excitatory input signals while in1, in2, ¨ ¨ ¨ , inm2

be inhibitory input signals. Let y denote the output associated with this neuron.
Then,

y “

$

’

&

’

%

0, if at least oneini “ 1, i P t1, 2, ¨ ¨ ¨ ,m2u

0, if inj “ 0@j and
řm1

i“1wiei ă θ

1, if inj “ 0@j and
řm1

i“1wiei ě θ

(6.2)

Examples of individual MP neurons for AND, OR function is given in Figure 6.6. Note
that all boolean functions can be represented with a combination of three different gates
- AND, OR and NOT. Since individual AND, OR and NOT functions can be represented
using an MP neuron, it is clear that every possible boolean function can be represented
using an MP neuron.

Figure 6.6: MP neurons for AND, OR func-
tions taken from [Roj96]

6.2.2 Rosenblatt’s Perceptron

After McCullogh and Pitts came the psychologist Donald Hebb who proposed the idea
of Hebbian Learning. To put it briefly and simply, Hebbian learning says that if a
neuron A repeatedly excites a neuron B, the connection strength between A and B will
be strengthened i.e. it gets easier for A to trigger B. It is intuitive, based on the biology
of neurons we saw so far, that this idea can be implemented into the neuron model by
introducing weights. Rosenblatt’s perceptron is a modification of the McCulloch-Pitt
neuron that incorporates the idea of Hebbian learning. A pictorial representation of the
Rosenblatt’s perceptron, also called as the classical perceptron, is given in Figure 6.7.
The structure of the classical perceptron can be summarized in the points below:
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• Inputs and outputs are binary. Denote the m inputs as x1, x2, ¨ ¨ ¨ , xm.

• The threshold function is a step function at θ, just like it was in the case of an
MP-neuron.

• The weights are real valued.

• Each neuron is associated with a threshold θ such that the output y is defined as
follows:

y “

#

0, if
řm
i“1wixi ă θ

1, if
řm
i“1wixi ě θ

(6.3)

Figure 6.7: The classical perceptron taken
from [RS20]

Although it was initially believed that the single perceptron can represent any boolean
function, it was later pointed out by Minsky and Papert that the perceptron neuron
cannot represent the XOR function. However, the XOR function can be represented with
the help of a network of neurons. That is, a network of neurons can represent a larger
class of functions than the individual neuron.

Every boolean function can be represented with a network of finite number percep-
tron units. But the problem with the model is that real world inputs most often
not binary. This gives rise to a modification of the perceptron called as the real
perceptron.

The perceptron Since the classical perceptron does not recieve non-binary inputs, it
can be modified to allow real values as inputs. The weights, along with the inputs is real
valued. The threshold function is still step function at the bias θ. This implies that the
output for a single neuron is still binary. The neuron fires only if the weighted average
of the input exceeds a given threshold.

Remark 6.1. Note that we refer to Rosenblatt’s perceptron as “the classical percep-
tron” while the perceptron with real valued inputs is called“the real perceptron” or just
perceptron when the context is clear.

6.3 Geometric interpretation
Assume m inputs x1, x2, ¨ ¨ ¨ xm. y denotes the output, θ is the threshold and wi indicates
the weight corresponding to xi for i P t1, 2, ¨ ¨ ¨ ,mu. The vector w̃ “ pw1, w2, ¨ ¨ ¨ , wmq is
called the weight vector.
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Mathematically, the locus of all points x̃ “ px1, x2, ¨ ¨ ¨ , xmq
T P Rm that are assigned

0 or 1 by the single perceptron unit is given as:

C1 “ tx̃|x̃
T w̃ ě θu and C0 “ tx̃|x̃

T w̃ ă θu

The locus of points in Rm that separate points in class 1 from those in class zero is
given by the set

tx̃ P Rm
|x̃T w̃ “ θu “

#

x̃

ˇ

ˇ

ˇ

ˇ

m
ÿ

i“1

wixi “ θ

+

(6.4)

The set of points that separate the points that lie in the two classes is clearly a m ´ 1
dimensional hyperplane in Rm. In other words, the single perceptron unit with the
threshold activation function separates the points of the two possible classes by a linear
decision boundary.

Example 6.1. Consider for instance the following scenario. Input is two dimensional i.e.
all our inputs are of the form px1, x2q

T . Let the weights corresponding to x1 and x2 be
0.3 and 0.5 respectively. Let the threshold value be θ “ 1. Then the decision boundary
defined by 0.3x1`0.5x2 “ 1 is nothing but a 1-dimensional hyperplane in R2. The graph
of the decision boundary is shown in 6.8.

y “

#

0, if 0.3x1 ` 0.5x2 ă 1

1, if 0.3x1 ` 0.5x2 ě 1
(6.5)

Figure 6.8: 0.3x1 ` 0.5x2 “ 1

4

Notation

Although the bias θ for each perceptron is a pre-determined and not an input, ´θ is
often considered as an pm ` 1qth weight corresponding to an additional input xm`1 “ 1.
Thus,the input and vectors are “extended”. The number written inside a node mentions
the θ value in the case when the activation function is step function at θ.

The advantage of this is that the separating hyperplane always passes through the
origin. Reconsider the example 6.1. The extended input and output vectors are px1, x2, 1q
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Figure 6.9: Considering bias as an additional input (Figure taken from [Roj96])

and p0.3, 0.5,´1q. The threshold for this neuron has to be 0 for it to be equivalent to the
original neuron defined in Example 6.1. The separating plane now is:

 

px1, x2, 1q
T
| 0.3x1 ` 0.5x2 ´ 1x3 “ 0

(

Ă R3 (6.6)

The locus in 6.6 is clearly a plane passing through the origin as shown in Figure 6.10. In
fact, the locus of points in 6.6 and 6.10 is the plane defined by the corresponding weight
vector p0.3, 0.5,´1q as the normal vector.

Figure 6.10: Hyperplane 0.3x1 ` 0.5x2 ´ 1x3 “ 0

Generalizing the above information, if the input data px1, ¨ ¨ ¨ , xmq
T and the corre-

sponding weight vector pw1, ¨ ¨ ¨ , wmq
T lie in Rm, then extending the vectors as follows

ensures that the separating hyperplane passes through the origin.

x̃ “ px1, ¨ ¨ ¨ , xm, 1q
T and w̃ “ pw1, ¨ ¨ ¨ , wm,´θq

T

Note that the original and extended vectors are denoted in the same manner.Depending
on the context, I will mention what x̃ and w̃ refer to.

Example 6.2. Consider the boolean functions shown in Figure 6.11. Points lying in the
pink side of the plane belong to one class while the others belong to the other class. Since
both classical and real perceptron units can only find a hyperplane as the separator, it
is clear as to why the boolean function corresponding to pcq cannot be represented using
a single classical perceptron unit. The boolean function corresponding to pcq is nothing
but the XOR function we came across earlier.
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Figure 6.11: (a), (b) have linear separation while (c) does not. Figure taken from [RS20]

The real perceptron cannot act as a classifier unless the points belonging to the two
classes are linearly separable. Figure 6.12 is an example of points that a single perceptron
unit cannot separate. 4

Figure 6.12: Real input values that are not linearly separable

Note that using a single real perceptron unit with threshold activation to classify
points from classes 0 and 1 is equivalent to finding a hyperplane passing through the
origin that separates points from the two classes. In other words,

The perceptron can be used to as a classifier only if the data points at hand are linearly
separable.

6.4 Learning a single perceptron
Definition 6.1. Two finite sets of points A and B in an m-dimensional space are called
linearly separable if n ` 1 real numbers w1, w2, ¨ ¨ ¨ , wn`1 exist such that every point
px1, x2, ¨ ¨ ¨ , xnq

T P A satisfies
řm
i“1wixi ě wn`1 while every point px1, x2, ¨ ¨ ¨ , xnq

T P B
satisfies

řm
i“1wixi ă wn`1.

Proposition 6.1. Let A and B be two finite set of points in Rm such that points in A
belong to class 0 while those of B belong to class 1. Then the set of points A and B are
linearly separable iff they are absolutely linearly separable.
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Proof. Absolute linear separability implies linear separability follows directly from defi-
nitions. We are left to prove the converse.
The points in A and B are linearly separable implies that:

m
ÿ

i“1

aiwi ě wm`1@ pa1, ¨ ¨ ¨ , amq
T
P A and

m
ÿ

i“1

biwi ě wm`1@ pb1, ¨ ¨ ¨ , bmq
T
P B

Define ε and w1 as follows:

ε “ max

#

m
ÿ

i“1

wibi ´ wm`1

ˇ

ˇ

ˇ

ˇ

pb1, ¨ ¨ ¨ , bmq P B

+

and w1 “ wm`1 `
ε

2

Now, for points pa1, ¨ ¨ ¨ , anq P A
m
ÿ

i“1

wiai ´ wm`1 ě 0 ùñ

m
ÿ

i“1

wiai ´
´

w1 ´
ε

2

¯

ě 0

ùñ

m
ÿ

i“1

wiai ´ w
1
ě ´

1

2
ε ą 0

ùñ ùñ

m
ÿ

i“1

wiai ą w1

Similarly, it can be shown that all points pb1, ¨ ¨ ¨ , bmq satisfy the following condition:
m
ÿ

i“1

wibi ă w1@ pb1, ¨ ¨ ¨ , bmq
T
P B

Perceptron learning

• Start: The weight vector w̃ “ w̃0 is generated randomly. Set t denote the iteration
number. Start by setting t “ 0.

• Test: A vector x̃ P AY B is selected randomly,
- if x̃ P A and w̃tT x̃ ą 0, go to Test,
- if x̃ P A and w̃tT x̃ ď 0, go to Add,
- if x̃ P B and w̃tT x̃ ă 0, go to Test,
- if x̃ P B and w̃tT x̃ ě 0, go to Subtract,

• Add: Set w̃t`1 “ w̃t ` x̃ and replace t by t` 1, go to Test.

• Subtract: Set w̃t`1 “ w̃t ´ x̃ and replace t by t` 1, go to Test.

Geometric visualization of the perceptron learning algorithm Consider the vec-
tors w̃ and x̃ in R3. Then the separating hyperplane is given by w1x1 ` w2x2 ` w3 “ 0.
This implies that the separating hyperplane can be be identified by its unique normal
vector pw1, w2, w3q

T . Thus we want to find the plane or its unique normal w̃, given that
we have two sets of points A and B. Assume that the sets are linearly separable. The
proposition 6.1 then implies that the two sets are absolutely linearly separable. Without
loss of generality let the following hold,

w̃T x̃ ą 0@ x̃ P A and w̃T x̃ ă 0@ x̃ P B
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Observe that w̃T x̃ ą 0 implies that the angle between the vectors w̃ and x̃ is acute while
w̃T x̃ ă 0 implies that the angle between the vectors is obtuse. Therefore all vectors in
set A are at an acute angle α with the normal vector of the plane while all vectors in B
are at an obtuse angle β with the hyperplane’s normal as shown in Figure 6.13.

Figure 6.13: Geometric visualization of angles α and β

Perceptron learning algorithm starts with a randomly chosen w̃0. If a vector x̃ P A is
such that w̃T x̃ ă 0. This means the hyperplane associated with w̃0 does not accurately
separate points in A Y B. This is shown in Figure 6.14. The angle between the vectors
is obtuse instead of being acute. The angle can be made “more acute” by pushing the
vector x̃ towards the normal w̃. This can be done by updating our weights from w̃ to
w̃ ` x̃. This update would imply that a new separator, defined by the normal w̃ ` x̃,
is now there which corrects for the point x̃ we chose initially. Usng similar arguments,
one can explain how updating w̃ to w̃ ´ x̃ would correct for a point in B that is wrongly
classified as being in A.

Continuing this procedure, as mentioned in the algorithm above, would eventually
give us a separator that correctly divides the points in A from points in B. Notice that
the weight vector is rotated one way or another every time the weight vector is updated.

Remark 6.2. The plane drawn with red boundaries in Figures 6.14 and 6.13 has pw1, w2, w3q
T

as the associated weight vectors.

Convergence of the learning algorithm

The algorithm described above would be practically useful if the number of steps the
algorithm takes to arrive at a solution is finite. The proposition below proves that the
perceptron learning algoritm takes at most a finite number of steps to arrive at the right
answer.

Proposition 6.2. If the sets A and B are finite and linearly separable, the perceptron
learning algorithm updates the weight vector w̃t a finite number of times.

Proof. As usual we assume that A consists of all those x̃ such that x̃T w̃ ą 0 and B
consists of all those points which satisfy w̃T x̃ ă 0. Without loss of generality, the following
simplifications can be made:
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Figure 6.14: Adjusting weights

• The sets A and B can be joined to give a single set S “ AYB´ where B´ consists
of negated elements of B.

• The vectors in S can be normalized. If a weight w̃ ensures w̃T x̃ ą 0, it holds for
any other scaled version of x̃.

• The weight vector can also be normalized. We assume that a solution in the form
of a linear separator exists and we denote the normalized solution vector as w̃˚.

Let w̃t`1 be the weight vector at the end of t ` 1 iterations. Let s̃ P S such that it was
classified incorrectly at the tth iteration. This implies that the weight was updated from
w̃t to w̃t`1 “ w̃t ` s̃. Then the angle ρ between w̃t`1 and w̃˚ is given by

cos ρ “
w̃˚ ¨ w̃t`1

?
w̃t`1 ¨ w̃t`1

Using the notation δ “ mins̃tw̃
˚s̃ | s̃ P Su, we can derive the following:

w̃˚ ¨ w̃t`1 ě w̃˚ ¨ w̃t ` δ ě w̃˚ ¨ w̃0 ` pt` 1qδ (6.7)

Since the weight w̃t was corrected, it implies that thay the term w̃ts̃ ď 0. Therefore, it
can be deduced that

||w̃t`1||
2
ď ||w̃t||

2
` 1

Repeating the same prcedure backwards with respect to t gives us:

||w̃t`1||
2
ď ||w̃0||

2
` pt` 1q (6.8)

Using the equations (6.7) and (6.8), the following can be derived easily:

cos ρ ě
w̃˚ ¨ w̃0 ` pt` 1qδ
a

||w̃0||
2 ` pt` 1q

(6.9)

The term on the right in (6.9) grows proportionally to
?
t. The term on the right can

grow arbitrarily large, however, the term cos ρ is restricted to r´1, 1s. Therefore, the
number of possible updates is atmost finite.
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6.5 Learning the multi-layer feed forward perceptron
Note that the perceptron learning algorithm we discuss in this section is the real per-
ceptron. Before looking at the learning algorithm or how it works, it is important to
understand some definitions and properties.

We assume in this section that the architecture of the feed forward neural network
is given (i.e. we know the number of hidden layers required etc.) and can be used to
model the function of our interest. It is clear that every multilayer perceptron or a feed
forward neural network corresponds to a function whose parameters are all the weights
and biases we define for each individual neuron in the network. So we are expected to
identify the right set of weights and biases in order to enable the network to approximate
the desired function. This process of determining the parameter values such that the
network computes the desired function is called learning the network.

From the universal approximation theorem, it is clear that there always exists an MLP
which can approximate any given function to arbitrary precision. Although this theorem
proves the existance of MLPs arbitrarily “close” to the function of interest, it does not
mention how the MLP can be constructed. Let gpx̃q be the function we want to model
while the neural network architecture we are given corresponds to the function fpx̃; w̃q.
We wish to find the right set of weights and biases such that f is a good approximate
of g. Therefore the optimality criteria we choose, to compare the performance of f for
different weight values is :

xW “ arg min
w̃

ż

x̃

Dpfpx̃, w̃q||gpx̃qqdx̃ (6.10)

In (6.10), we use the KL diveregence term i.e. Dpfpx̃, w̃q. The KL-divergence quantifies
the error in using the function fpx̃; w̃q to approximate gpx̃q.

But there is a problem - gpx̃q is not known. This is because gpx̃q is the true classifier
which we do not know. Since we do not know g, we sample different x̃ values and their
corresponding gpx̃q values. This is nothing but collecting the training sample. So the
problem now is to learn the function f we need using the training sample alone. To
sum up, we would ideally want to optimize the network to represent g everywhere. Since
this is not possible, we try to estimate a network that fits at the given set of labelled
observations.

Remark 6.3. The bias is not often explicitly mentioned. It is implicitly assumed that
the bias has been written as one of the weights corresponding to the input xm`1“1.

The previous subsection dealt with how the weights and bias of a single perceptron
unit can be learnt using the training data we have. But what about more complex
decision boundaries? Consider, for example, the classification problem in 6.15. Although
a single neuron cannot model the boundary, it is clear that multiple perceptrons can
together model the boundaries of this dataset. The boundaries of the red data points are
defined by edges of two polygons. Each polygonal side can be defined with the help of a
perceptron as shown in 6.17 only after the other points have been relabelled as
shown in 6.16. This relabelling of all points to identify the weights of a perceptron unit
add a layer of complexity while trying learning MLP using single unit perceptrons.

We have seen earlier that trying to using a single perceptron unit as a classifier is
equivalent to finding a hyperplane in Rm that divides the two sets of points in the data
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set. The problem is equivalent to finding the appropriate weights w̃ such that w̃ ¨ x̃ ě 0
for all x̃ in belonging to one class while w̃ ¨ ¨ ¨ x̃ ă 0 for all x̃ in the other class.

Problem with the threshold function: One might be tempted to use the ideas
of single perceptron learning to construct more complex decision boundaries as well.
However, the idea to update the weight vector in small steps until all points are classified
correctly may not always be ideal as the number of iterations to reach the to reach the
final step might be very large at times. This is because of the choice of taking threshold
function as the activation function. Due to the threshold function, the overall function
f : Rm ÝÑ t0, 1u that the single perceptron unit represents will be a step function at 0.
This implies that f has 0̃ derivative (with respect to w̃, where w̃ is the weights vector)
everywhere except at the point 0. This inturn implies that there will be instances where
change in weights will not change the function f . This in turn implies an unchanged
error value. Therefore, we have no idea of which direction to move our weight vector to
in order to reduce the error. This is a problem as it can increase the number steps needed
to stop the perceptron learning algorithm.

Figure 6.15: Data points with non-
linear separation. Figure taken
from [RS20].

Figure 6.16: Relabelling the points
to define hyperplane X1-X2. Figure
taken from [RS20].

The problem with the single perceptron learning will be observed in multiple percep-
trons as well if the same idea of updating weights is used with the help of a threshold
function. This problem with the activation function can be solved by using a continuous
activation function like the sigmoid function. This function ensures that a change in
weights leads to an increase or decrease in error (since the derivative is never zero for real
inputs). This would enable us to update the parameters in a way that reduces the error.

Real perceptron cannot always model real world data: Real world data is not
always linearly separable. Therefore the real perceptron cannot always model real world
data. Understanding the interpretation of sigmoid activation function, which is given
later, makes it more intuitive for us to accept sigmoid activation in real world settings
where linear separation rarely exists.

6.5.1 Intrepretation of the sigmoid activation

Consider the one dimensional points in Figure 6.18. The two points have been drawn
with a separation to show that one set of points belong to class 1 while the rest belong
to class 0. Clearly, the two point, if plotted on the same real line, will overlap. As we
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Figure 6.17: Combination of perceptrons can define the bound-
ary. Figure taken from [RS20].

go from left to right, the likelihood of finding a red dot increases. This likelihood is
calculated based on a window around each point on the real line as shown in 6.19.

Therfore, the sigmoid can be considered as the function that models the overlap
present among data points of different classes that we see in real data sets. The value of
the sigmoid function at a given point can be considered as the probability of a point
belonging to class label 1 at a given value of input.

Figure 6.18: One dimensional
points

Figure 6.19: Interpretation of the
sigmoid function

Figure 6.20: The Sigmoid function

Figure 6.21: All three figures were taken from [RS20].

6.5.2 Perceptron with differentiable activation function

Consider the perceptron unit shown in figure 6.22. Since addition and sigmoid are dif-
ferential functions whose composition corresponds to a given perceptron unit, it is clear
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Figure 6.22: Figure taken from [RS20].

that the function represented by a unit perceptron is differentiable. This implies that
one can compute the change in y for small changes in input values or weight values.

dy

dz
“ σ1pzq (6.11)

By

Bwi
“

dy

dz
ˆ
Bz

Bwi
“ σ1pzqxi (6.12)

By

Bxi
“

dy

dz
ˆ
Bz

Bxi
“ σ1pzqwi (6.13)

As mentioned earlier, if we knew the true classifier g we need to model then the
optimization problem of our interest would be:

xW “ arg min
w̃

ż

x̃

Dpfpx̃, w̃q||gpx̃qqdx̃

Ideally the weights should be such that f “ g. However, this is not possible because
we do not know the exact complexity of the architecture required when we start. So
the difference or the error term can never be made 0. Therefore, we try to ensure that
the regions in the input space that are more likely to occur have lower error rates than
those inputs which are less likely to occur. This is accounted for by multiplying to the
divergence term, the probability of observing that input. In other words, X is treated as
a random variable. Mathematically, our optimization problem now converts to:

xW “ arg min
w̃

ż

x̃

Dpfpx̃, w̃q||gpx̃qqP pxqdx̃ “ arg min
w̃

ErDpfpX̃, w̃q||gpX̃qqs (6.14)

Again, since g is not known to us, the above expected error or risk is estimated as follows:

ErDpfpX̃, w̃q||gpX̃qqs « 1

n

n
ÿ

i“1

Dpfpx̃i, w̃q||diq where di “ true class label for xi (6.15)

Note that the term ErDpfpX̃, w̃q||gpX̃qqs is the expected error or risk i.e. it is the
mean error over the entire input space. The estimate mentioned in equation (6.15) on
the other hand is the empirical risk.

Assume there are L different classes and the neural network has L nodes in the
output layer. Let y1, ¨ ¨ ¨ , yL denote the L outcomes we get using our neural network
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Figure 6.23: Neural network with
softmax activation. Figure taken
from [RS20].

while d1, d2, ¨ ¨ ¨ , dL denote the true outputs. For a given input px1, ¨ ¨ ¨ , xmq
T , an output

py1, ¨ ¨ ¨ , yLq
T with yi “ 0 for all i except i “ i0 implies that the input x has the class

label j. Since this is too idea to happen in real world, we get a vector of probabilities in ỹ
that add up to 1. The distribution corresponding to the constant function di is that the
probability of di occuring is one while every other point has zero probability to occur.
The KL divergence can be replaced with cross-entropy Let q be the true density
which we are trying to approximate using f . Then it can be shown that:

KLpq||fq “

ż

qpxq log

ˆ

qpxq

fpxq

˙

dx “ ´

ż

qpxq log fpxqdx`

ż

qpxq logpqpxqqdx

“ Cpq, fq `Hpqq

Clearly, since the termHpqq is independent of f , it is clear that minimizing KL-divergence
between f and q is equivalent to minimizing cross entropy Cpq, fq between q and f .

A couple of important points worth mentioning again are stated below:

• The function we wish to truly optimize over all possible weight vectors is the ex-
pected risk. However, since the function g is unknown to us, we minimize the
emperical risk estimate of the expected risk.

• Making the activation function differentiable enables us to get a network which
represents a differentiable function. This sets up a scenario where we can exploit
gradient decent techniques to optimize the functions of our interest.

Remark 6.4. Note that the x̃i in (6.15) denotes the ith observation. We assume that
out training set consists of n labelled observations. Any given observation is generally
denoted by x̃ “ px1, x2, ¨ ¨ ¨ , xmq

T . However, x̃i “ pxi1, xi2, ¨ ¨ ¨ , ximqT .

Softmax activation

The activation function we saw is a scalar activation function i.e. its output is a scalar.
There exist vector activations as well which take in a m dimensional input to give
out a L dimensional output ỹ. An example of such a vector activation function is the
softmax. Softmax vector activation works as shown in Figure 6.23.
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In Figure 6.23, we denote the weight of the edge between xi and zj to be wij. Corre-
sponding to each zi, there is a bias bi such that zi denotes the affine combination of x1is
and bi.

zi “
m
ÿ

j“1

wjixj ` bi and yi “
exp zi

řm
j“L exp zj

(6.16)

Observe that the each yi can be viewed as the probability of the given input belonging
to class one. The only difference between a scalar activation function and a softmax
activation lies in how a change in weights of the network change the final values of the
network.‘In case of using a sigmoid for each output neuron, a change in weights of a
given neuron N will only effect the output neuron associated with neuron N. In the case
of softmax, a change in weights of the network can change all output values due to the
constraint

řL
i“1 yi “ 1. If the number of possible classes is L, the we can try to calculate

a network that outputs the ith standard basis vector if the input belongs to the ith class.
However, this is quite an ideal scenario to occur in real word models. Instead, what we
get py1, ¨ ¨ ¨ , yLq

T can be viewed as a vector of probabilities.
Since py1, ¨ ¨ ¨ , yLq can be treated as a vector of probabilities, therefore the distribution

corresponding to Y while calculating KL divergance is P px P class iq “ yi

Some points to note

• Given a neural network, it can either have a single output neuron or multiple output
neurons. The single output scenario is often used for binary classification problems.
For multi-class problems, multiple outputs are required.

• In case of multi-class problems, each output neuron can be associated with a uni-
variate sigmoid or the final layer can be associated with a vector activation function
to get a vector output.

Notation

The input layer is called the zeroth layer. The outputs coming out of the ith hidden
layer are denoted as typiq1 , y

piq
2 , ¨ ¨ ¨ , y

piq
li
u. The number of nodes in the ith hidden layer

are denoted by li. There are L output nodes which give the outputs y1, y2, ¨ ¨ ¨ , yL. The
weight of the edge connecting the ith unit of k ´ 1 layer and jth unit of the kth layer is
given by wpkqij . Bias corresponding to the jth unit of the kth layer is denoted by bpkqj .
Problem set-up We use a differentiable activation function so that the gradient de-
scent algorithm can be used to minimize the empirical risk.

• We are given a training set of input-output pairs pX̃1, d1q, pX̃2, d2q, ¨ ¨ ¨ , pX̃n, dnq.

• We wish to minimize the following function:

Risk “ Rpw̃q “
1

n

n
ÿ

i“1

Dpfpxi; w̃q || diq

Using gradient descent algorithm

• Initialize all weights and biases wpkqij and bpjqi for all possible i, j, k.
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Figure 6.24: Neural network notations. Figure taken
from [RS20].

• For each layer k and for all possible i, j, update weight as follows:

w
pkq
i,j “ w

pkq
i,j ´ η

dR

dw
pkq
i,j

(6.17)

Repeat the above rules until the risk function converges.The term η is called the learning
rate. That is because it quantifies how big a step we have to take in the direction opposite
to the gradient. Clearly,

dR

dw
pkq
i,j

“
1

n

n
ÿ

t“1

dRpyt, dtq

dw
pkq
i,j

where yt “ value estimated by the network

Using basic calculus and following the notations carefully helps us apply the gradient de-
scent algorithm to find the appropriate weights that reduce the risk function. This tech-
nique of using gradient descent to arrive at a minimum is called the Back-propagation
algorithm.
Problems associated with the Back-propagation algorithm

• Gradient descent doesn’t always take us to the global minima. If we initialize our
weights to a point that is in the vicinity of a local minima, then the gradient descent
algorithm leads us to the local minima.

• It is quite common for the empirical risk function to have saddle points. Therefore,
it might happen that we end up at a saddle point instead of a minimum while using
the gradient descent algorithm.

• If we use univariate sigmoid functions as activation functions for each of the neurons
in the output layer, then it is not possible for us to interpret the output vector we
get. Since the output is not always the exact value (class label) we want, there is
no way of interpreting the outputs that might be some values strictly between 0
and 1.

• Adding an extra data point into the training set does not alter the error function
much. Therefore, adding an additional point doesn’t significantly change the re-
sulting neural network. This can be a problem if the data point added is quite
important and must therefore change the structure of the network. Otherwise, this
robustness is good because we do not want to entertain any additional noisy points
that are added to our training set.
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6.6 Data Analysis
In this section we use the data set that we used in the classification tree chapter. The
details about this data set can be found in Chapter 5. However, to summarize, the data
set we are considering is called the “data_banknote_authentication” data set that has
been taken from the UCI machine learning repository. The dimension of the data set
1372 ˆ 5. Each data point in this dataset corresponds to a bank note. Four continuous
variables associated with each of the bank note is given. The fifth variable gives the true
class label of each data point or bank note. Class label 0 implies that the note is fake
while a value of 1 implies that it is a real bank note. We now construct a neural network
of one hidden layer in order to use it as a classifier in the future.

> test = data_banknote_authentication[753:772,]
> dim(test)
[1] 20 4
> train = data_banknote_authentication[-c(753:772),]
> dim(train)
[1] 1352 5

Install the package “neuralnet” in order to get functions that help construct neural net-
works.

> library(neuralnet)
> nn = neuralnet(class ~., data = train, hidden = 3, startweights = NULL,
algorithm = ’backprop’, err.fct = ’ce’, act.fct = ’logistic’,
linear.output = FALSE, learningrate = 0.1)
> plot(nn)

The code “hidden = 3” implies that we want a neural network with a single hidden layer
such that this hidden layer consists of three neurons. If we wanted a neuron with two
hidden layers, then the command we must use is “hidden = px, yq”. The variables x and y
denote the number of neurons we want in the first and second hidden layers respectively.
Choosing “startweights = NULL” implies that we wish to start with an arbitrary choice
of weights. The term “err.fct = ’ce” ’ implies that the function we wish to optimize uses
cross-entropy. The function “neuralnet()” can construct both neural network classifiers
and regressors. Specifying that the optimizing function uses cross entropy implies that
we wish to construct a neural net classifier. Choosing “linear.output = FALSE” implies
that we wish to have activation functions associated with neurons of the output layer as
well. “linear.output = TRUE” leaves the output linear without letting it go through the
activation function.

The resulting neural network associated with this data set is given in figure 6.25.
Observe that the nosed and edges associated with the bias term are given in blue. The
“neuralnet()” function used the gradient descent algorithm to arrive at the a minima. At
this minima, the error value is 0.03009. This error value along with the number of steps
it took to reach this minima is mentioned in the figure. The weight values had to be
updated 1370 times in order to reach this point of optimum.

Everytime we run the “neuralnet()” function, we get a different set of weights assuming
that we keep the architecture of the network fixed. This is because we set the weights
arbitrarily and then use the gradient descent to reach a point of minima. Therefore,
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Figure 6.25: Neural network associated with the bank note dataset

the neural network we get and its associated error value are different every time we run
the “neuralnet()” function code. I ran the code multiple times until I could get a neural
network with significantly low error.

> output = compute(nn,test)
> output$net.result

[,1]
753 2.071104e-20
754 1.413936e-04
755 2.071104e-20
756 2.071104e-20
757 2.071104e-20
758 2.071104e-20
759 2.071104e-20
760 2.071104e-20
761 2.071104e-20
762 2.071104e-20
763 9.999992e-01
764 1.000000e+00
765 1.000000e+00
766 1.000000e+00
767 1.000000e+00
768 1.000000e+00
769 1.000000e+00
770 9.999992e-01
771 1.000000e+00
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772 1.000000e+00

Clearly, the neural network predicts all test set points correctly. From the error function
value itself, it is clear that the given neural network we have can act as a very good
classifier.
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